AD-ALO4 586 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 972
. CONDITION RECOGNITION FOR A PROGRAM SYNTHESIZER. (U)
JUN 81 J S LAPEs C W MILLER

UNCLASSIFIED

NL
Lo 2 ,
AE ’

T ——————E——- ra— 1

" @ i

© NAVAL POSTGRADUATE SCHOOL
< Monterey, Galifornia
g

THESIS

CONDITION RECOGNITION FOR A
~ PROGRAM SYNTHESIZER ,

by

Joseph Shawn‘Lape P 47
&nd :’ / . (yl et /
Charles Wayne Miller e

Juner 1981

Thesis Advisor: Douglas R. Smith

Approved for public release; distribution unlimited

81 9 28 026

SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered)

REPORT DOCUMENTATION PAGE ..Qg*'?gg:;:‘.'s;;:g":o..
l- '!’5" NUI"' 2. GOVY ACCESSION NOJ 3. RECIMENT'S CATALOG NUMBSER
An-A10y 5K6

4. VITLE (and Subittie) 5. TYPE OF REPORT & PEMOD COVERED
Master's Thesis:
Condition Recognition for a Program Synthesizer June 1981
6. PERFPORMING ORG. AEPORT NUMBER
7. AUTHOR(e) 6. CONTRACY OR GRANT NUMBER(s)
Joseph Shawn Lape
Cahrles Wayne Miller
9. PENPORMING ORGANIZATION NAME AND AGORESS - RROGRAM CLEWENT. PROIECT T AK
Naval Postgraduate School
Monterey, California 93940
11. CONTROLLING OFFICK NAME AND ADORESS 12. REPORT DATE
June 1981

Naval Postgraduate School

13. NUMBER OF PAGES

Monterey, California 93940 147
ITT uoNITORING AGENCY NAME & ADDRESS(!! diiferant frem Centrelling Offics) | '8. SECURITY CLASS. (of tAle rapert)
Unclassified

M. ggc tAlllﬂCAﬂO'ﬂ OOWNGRADING
MEDULE

T6. OISTRIBUTION STATEMENT (of this Reper))
Approved for public release, distribution unlimited

17. OISTRISUTION STATEMENT (of the sbetrast entered in Slesk 20, il difterent em Rapert)

18. SUPPLEMENTARY NOTES

19. KXY WORDS (Cantinwe on erae oide i y and ideniify by blask mambder)

program synthesis, automatic programming, conditicns, example computation,
static processing, dynamic processing, miniterms, character set hierarchy,
condition recognition

20. AGSTRACT (Continue an oree ofive if ary and identify by dleoek mamber)

" An enumeration algorithm which synthesizes programs from example
computations is presented. The algorithm, originally proposed by Alan W.
Biermann of Duke Uaiversity, assigns a labelling of the instructions contained
in an example trace consistent with producing minimum state Moore machine
representations for the synthesized programs. Techniques for processing the i
information to reduce enumeration are given. Biermann's algorithm is
extended by trace preprocessing techniques which identify and generalize

ronN
DD 2w 73 1473 coiTion oF 1 nov 6818 OBsOLETR

(page 1) S/N 0183-014- 4401 | 1 SECUMTY CLASMIFICATION OF THIE PAGE (When Dova Bnisved) :

geu-vv CLAPNTICATION OF Tl FoQLrVan NRate Bntomd:

] conditions on instruction sequencing in the synthesized programs without the
user's assistance. The techniques are presented using text editing as the
domain, but are general enough to be extendable into other domains.

Unanounand

Jasi Ly b

DD orm 1473

01'62-014-6601 SECUMTY CLAGNPICATION OF TiIs PaSRIThan Dota Entesed)

Approvea tor public release; dicstritution uniimited.

CONDITION RECOGNITION FOR A PROGRAM SYNTHES[ZER

by
Charles Wayne Miller
Captain, Onited States Marine Corps
B.E., Vanizerspilt University, 1372

and

Josepn Snhawn Lape
Captai., United States Marine Corps
B.S., University of Louisvilile, 197H

Submitted in partial rulrilliment of thne
requirements tor tne degree ot

MASTER OF SCIENCE IN COMPUT@R SCIENCE
tfrom tne

NAVAL POSTGRADUATE SCHOOL
June 1981

Authors L/;K@i/éﬂ é(/\////VZZ:/L

- o s - - - T T e e . e T . " s P o S Sty T e Vo e S e S . S S " ot A e

Approved bdy: %

- e e - o —— . - — ————— o ——— — o

. S ———————— > S o T —— ———

ABSTRACT

An enumeration aleorithm which syntnesizes programs trom
exanple computations is preseateea, Tae algoritnm, originally
proposed by Alan #. Biermann ot Tuke University, assiens a
lapelling of tne iastructions contained in an example trace
consistent with producing minimum state Moore mactine
representations for tne syntnesized programs. Tecaniques 1ror

processing tne information to reduce enumeration are given.

Biermann”s algoritam 1s extended by trace preprocessing

techniques wnich 1centify and generalize conditions on

ahinithn s

instruction sequencine 1in the synthesized proerams witnhout
tne user’s assistance. Tne techniques are presented using

text editing as the domain, but are gemneral enough 1o be

extendable irnto other domains.

I.

Il.

TABLE OF CONTENTS

INTRODUCTION e s s o e e e e e e 10
A. BACKGROUND l¢
B. AUTOMATIC PROGRAMMING -~-- --~==-16€

1. General 15

2. Problem Specification with Natural Language -1828

3. Forma]l Problem Specitication --= 2¢

4, Input-Output Pair Specification ——=<-m=———c=e—v 24

5. Example Computations - 25

5. General Automatic Programmer Desipgn —=-—<-- 23

C. OBJECTIVES 22
D. THESIS ORGANIZATION —— e e e e ce————— 23
SINTHESIZER -—- &8
A. GOALS — -35
B. OVERVIEW 36
1. 3General Description —-—=—~---—o—commmmmmm e 36

2. Trace Coiine - e e a8

3. Input/Ourtput Trace Renresentation ——————=—-—-- 4

C. SYNTHESIS PROCKDURE - ca
1. Function - ———==44

2, Concepts ——— — 45

D. SYNTHESIZER STRUCTURE - 52
1. Static Processing =—=—ceccecmrrmmwrcncccre—cen- £2

2. Dynamic Processing 57

a. Label Assignment 59

b. Dirterence Set Resnlution =————=—scccace--fa

C. Dynamic Zaulvalenee ~=———cecwcecmmm o 9

Se BaACKUP/FIXUD === == —— e e 72

1il. 2PEZPRCCESSCR T e e e Ta
A. TROELEM SPECIFICATION =mmmmme e 74

P. DEISIGN FOR A CONTEIT FREZ INVIRAONVENT =—vmmm—oeee 73

1. Overview =——cos—m o d

€. Structurs or the Condition Preprermsser ——-=¢1

B, Preprocessnar Data STruclures ————eeemeemeaoo 2

®. Implamentation —=—--—=—ss—sme e e £€

C. DESIGN FOR A CONTEXLT SENSITIVE ENVIRONMENT —=—=a 27

1. COverview === sce oo e a7

2. Implementation —=----——memm e 17¢

IV. CONCLUSIONS AND RECOMMENDATIONS ===me—=—mmm——cme— oo 117
A. SYNTEESIZEkR e e e e e e 1i¢

B. COVDITION PROCESSING —~--———o e 112
AFFENDIX A: PROSRAM LISTING FCR SYNTEESIZ2ER =mmmo—o——oee 112
LIST OF FEFERENCES ~o——mm e e e e pE
ZIZLICCRAPHY —~— T e e e e e e e 185
INITIAL CISTRIBUTICON LIST =—=mmmme s e o e 17

19.

2¢.

21l.

Initialized Sequent tor the Suvare 2997 Propisn ———— R
An E¥xample COMpuUlation =——~—mmm e e 2"
PSI’s “oduiar Design -—————- e e - “1
Input Tra-e —-——— - e e el
NenZeterministic VMoore MAcalle =—~——~cmveocmmcmm oo <2
Deterministis Moore Macnine =—ee—e—ce e
Irstruction-Condition~-Instruction Triple ——=——mmmoeeo <5
Chainine or Dirrerence Sot Felatica ==———=-mcommmeaeoo a7
Non-deterministic Input Trace ==—==~==se—cmomemmmm o 7
Deterministic Trace - —————————— ——————a aw
Straignt-line Program -=-~—w-c-e- e e e 43
Minimum State Machine —=———mememm e e et
Instruction Set Lower 30uUdS ~———=———————mmmee e £1
Typical Input to S%atic ProrecSQr =————mvmecom e 23
Yoore Macnine tor [npul Trace —m—cememm o T
Intermediata Trace Zable =—memmmme e e
Tracefanle ~——sommommmm e Bttt bl =7
Partial Trace Llavelliineg —==—=—— ——m———————— e =1y
Partlally Determined Yoore Macaine ——=————mmememmeooo g2¢

Traze Table/Failure Memory Contisuration ror a
Force2 Assigament ~——-e=meme—mommem e €2
Trace Table Entry Showine Artitrary

ASSL1EZRMENT MELNOQ === mmm e e o e o

22.
23.

29.

Nondeterministirs Input Trace - -===65
Trace Tabdble/Faijure Memory Configuration

Atter Assienment at the Fourth Level —-— 26
Nondeterministic Pretfix Label Assizgnment ———=—w—c—c---- £a
Trace Table/Fatlure Memory ~-- ————— e e e e 71
Computation Witnout Expiicit Conditions -=—=w-=—ee—e- 7€
Computation #ith Explicit Conditions —-——="6
Svntresizer Action ~—=-—- e e e e e e e 421
ASCII Vestor By
Default Hierarcny --——-—--=- - ittt Lt HE
Moditted Hierarchy - -7
Format of Transition Tabdble ———=014
Monitor OQutput 9¢
Completed Transition Taple --- —-—— 93
Condition tor "Time” and "time” 99

8

ACXNOWLEDGEMENT

e wisn to acknowledge Alan W. Biermann for the extra relp

that he furnished us while we were doine the researcn ter

this thesis, and for the 1insiguts which ne zave us on

methods ot proeramming by =xamplia.

I. INTRODUCTION

A. BACKGROUND

Since the introduction ot electronic computine macrires,
mangual tasks that are munaane, tedious and/or repetitious
nave been considered ¢or automation. The computer is iaeally
suited for tnis type wcrk since 1t neither complairs cof
boredom nor wanders <from 1its assigzn=d task. The mecnine
meticulously sequences through a series ot computatiorns over
and over, producing answers consistent within tae
linitations of 1the nardware. As consistent as the computer
is at performing tasks, assigning tnhe tasks 1{s still left to
the user of the system.

Progranning the early machines was 3 ditfficult cnore.
Communications between man and machine were only
accomplisnable through tne languagze of tae machire. Thnis
machine languaee consisted nt tinary coaeda macnine
operations. Tae efticiant macaine language programmer had te
memorize tnese codes or xeep 4 list of tne codes «close bv.
All control transter points had to be coded in atsolute
machnine addresses wnich tne programmer calculated by nand. A
programmmer had to interpret the bdinary representation of
the machine operations to determine the cause of errors in
proerams. There were no diagnostic messaees to aid tne user

in 1isolating errors. The difficulty of programming 1in

10

michine laneuaee led to a searcn to tini obetter ways ¢t
generating proerams. The tirst step was thae recogrition tnat
the computer was a 2003 bookkeeper, capable ot computrice
absolute addresses from labels and translating maemonir
representations of macnine operation codes., Wetster’'s New
Wword Dicttomary, Seconi Edition, defines mnemonic 15 bte, a3
system or technique of improving memory by tae use cof
certain trormulas. Soon proerams were written wnicn would
accept abstract programs containihg mnemonics and labels,
convert tne mnemonics into macnine goperation codes é&nd
translate tne lavels into absolute macnine addresses. These

programs produced executdatle macaine language coce 2%

ovtput. These translation proerams were called assembdlers

and the data tney translated were called assemdbly larguacge
progranms.

Assembly language provided some automation of the manual
tasks associated with machine laneunace proerammine. An
important convenience of assembly lanzuage is tae
readabdbility of the programs wiaen CcOrpared Ic macnine
language programs. The mnencmics coavey tne mearning ot treir
fuaction wnile tne labels relieved tne programmer nt

calculating abdbsolute addresses for control transter points.

Assembly language provided & level of abstraction waicn
allowed programmers t0 concentrate on the programmine
problem witnout dealing witn every atomic macnine operation.

The assemblar provided pbookkeepinz, address translation and

11

P N

mneumonic <decoding fast and efficiently. Programmers were

now ~apable ot producinz more code 1ia less time witn tfewer
errors witn assembly language.

Assembly lareuage easeda tne proZrammers tasg but it
still could not be considered a2 panacea ror -computer-human
interaction., Assembly language still required tne programnmer
to malntatn control over many machine operaticas and nhe had
to provide tne logic to control tne tlow of program
execution. The instructions used to pertorm contrcl
functions appears as similar code tragments in Most prsgramrs
written in assembly lanesuaere. Tnese code tragments pertrormred
fuctions such as controlling branching decisions and keeping
count of loop indices. When it was observed that commen code
fragments appeared across a wide range of assembly programs,
it was recognized tnat taese code fragments coulad te
represented as a single instruction and the computer could
translate tne single instruction into th2 code fragment it
represented. The proerams that translate these <omplex
instructions 2are called compilers or 1interpeters. The
complied or 1interpeted languwaeges that tollowed assemdly
language 1in this evolutionary process incorporated tae
proeram fraements as 3 sineie instruction ror tane language.
Constructs suca as FOR, DO WHILE and IF THEN are examples cf
nigher level control structure impleméntatiorn.

FORTRAN was the first in a long 1line ot hiegher level

languages. FORTRAN differed from the others by becoming

12

B

enieared to a family ot users aad the laneuaee =sndures today
as one of the most trejuently used nhigher level languages.
¥hat gualities ot tne laneuage produced tnis popularity?

The FORTRAN larpguage is attributed to Jonn Backus. Fis
primary goal waen designineg tne laneuage was tn mage tne
language resemble the notaticn used in nign scrool aleebra,
Since the notation used in nign scnool alrsetra wads tamiliar
to 3 wide audience, FORTRAN e2ave a trisndly appearance. The
language”s apparent simplicity is tae endiearing quality eof
FORTRAN, Some other languaze implementors tailea to
recognize tais point and their languages never received wide
acceptance. AL30L 1s an example of a powerful lacngrage that
never received the acceptance anticipated.

Otner programming languages tnat tollowed aaded ccmpact
representation of otaer recurrine proegram fragrents. The
higner level constructs were not limited to cortrel
structures but also included constructs tor data
manipulation functions. Iverson’s (1] APL (A Pregrammirng
Language) provided powerful operators capable of pertorming
conplex furctions such 3as matrix multipiication in cne
iastruction.

This trend continues today. Many of the newer laneuaeg2s
implement sopnisticated and powertul operators and control
structures. Some of these languages are for a select segment
of computer users, intended for application to a particular

domain. The wusers are expected 110 be ramiliar with the

13

domain, so tne form of tne language snould te ftamiliar to
the user also. A prodvlem with 3 domain specitic laneuaee is
its tnavility to aaapt to otner areas. To work 1in anotner
area the user must become tamiliar with another lanzuage. A
prenomenon demonstrated by manRy computer users is a
reluctance to adapt themselves and learn & new languase tnat
may be more appropriate tor a given task. Either tney break
tne egg witn a sledge nanmer or dis the well witn 4& spoon,
When required to use 3 new lapeguaee, the user will likely
use only a8 small subset of tne language tnat is capatrle of
doine the Jjob., Worst than usine only a subtset ot tne
language features is tne tendency to bring oid programming
styles applicable to tne old language into the new languasge,
The point thnat 1s to be made 1is that learnineg a noew
progranming language is a hard cnore and is avoided wnenever
possible.

Another direction which tne automation of programming

tasks has taken 1s the development of a proerarring

environment. A programming environment automates some ot thre

m3anual chores bty providine the user with aias that &ssist
nin in constructing programs. The environment irncludes a
programmine laneuaee, an interactive syntax-directez edttor
and an on-line deougger. Tne editor provides syntax error
diagnostics waile tne programmer 1s creating 1the source
tile. The programmer {s forced to correct the syntax error

immediately before tne editor will allow nim to continue

1a

proeranmine. The error snhould ©be readily appareat to tre
programmer because it 1s in tne latest 1input. The on-lirne
debugeger allows the programmer to actively test nis proerarm,
nalt execution, coeck the value of variapnles, change the
value of wvariaoles or change tne code 1itselt. Prosrem
eavironment systems may even allow the programmer teo swit-n
from tne tne editor to tne on-line detugeer and bHack at ary
tinmne. A programming environment <can bte summarized as a
friendly interface utilizing an intelligent eaitor wnich can
recoegnize syantax errors in the associated prograrming
language and one that contains otner interactive pregramminz
tools.

Programming nhas been called an art form requirine
intellectual creativity. Thne automation of 1intellectual
behavior 1{s a tield ot study within Computer Science called
Artificial Intelligence, Tne stucy of the automaticn cf
prozrammine’ t3sks which require human-lige redsoning 1s
called Program Syntnesis ol Automatic Programmine. It 1s nct
our intention to provide a detinition of intelligenrt
behavior tor a machine since tnere is consideratle
disagreement even among the experts. However, we note that
tne goal of researcn in automatic progxramming i< tne samne
goal that led to all the advances in programminre languages.
Informally, this goal is to make tne interaction tetween man
and computer as painless as possibdble. Tnat is, pailnless ftor

tne man but not necessarily for tne computer. Dijkstra (2]

15

objects to our automation ot prosrammizeg by clairine, “de
should not automate progranming even it we can, Dpdecause it
would tagke a3way our enjoyment of the task. We cote tnere
are those wno may require the use of computer services taat
nave neitner tne time nor inclination to obtain the required
education to do that chaore. Trese inclide proressions surch
as lawyers, panysiclans, and even tneoretical pavsicists, We
assume, iy programmine becomes tully autorated, tre
progranmers will then turn their attention toward other
creative and stimulatinge pursuits. R. Fammine nas said, "Tre
purpose of computing is insigat not numbers.’

Many on-going efforts are 4almed at providing better
systems for the user so ne may create proerams faster, with
less errors and witn less eftYort. Tne nistory of programring
language development has shown that automation ot many
programming tasks is ¢feasinle. How much more ot the
prozrammineg taskxs can be antomated? What would re considered

the ultimate system for producing computer programs?

B. AUTOMATIC PROGRAMMING
1. General

Proeram sSynthesis or auvtomatic proerarmine is a

research topic concerned with the deveélopment of systems
that provide more and more automation ot the proeramring
process, particularly tnose tasks requiring numan-like
reasoning. Thne goal s not to create systems that program

themseives, but to create systems which canm comstruct, uander

16

T ‘“"""’""’m T

the direction ot a user, programs that can pertrorm some

function ne desires, Tnese systems must be easy 10 use, Sasy
to learn, and increase the etticiency ot the user, The users
of these systems will no lilonger pe restricted tc tne tew
computer protessionals, but will incluae otner protessional
*ields as well as non~-professionals. Automatic pregrammirne

systems 4re to interact with tne user, recognize

‘rejuirements, and then synthesize a correct proeram that

satisfies the requirements.

Two yuestions arise in the research o 3utomatic
progranning. First, what 1s tne form ot the interaction
between the user and the system? This question is called tne
specification problem because it is concerned with issues
relating to how the wuser s to inrorm tne system ot nis
requirements. The second question is, given a specification
method, wnat syntnesis tecnnique 1s available to be appiied
that will transform the specification 1into an appropriate
pragran, The tecanique used for synthesis i1s otten dependent
upon tne form of thae problem specitication and mecst or tne
projects 1involvine automatic proeramming consiaer potn
problems togetner. It nas been proposed by Green |3] that
the 1two questions sanould be separated witn research
proceedine concurreatly on both proolems. He proposes tnere
i1s a standard intermediate representation of tne provlem
specification which would permit interaction bdbetween the two

problems.

17

r
|

Four tecaniques nave veen proposec tfer the
specification problem which dominate tne jiterature on
automatic programming. Sacn of the proposed te~aniyues ot
problem specifticatiorn introduce a difterent approach to tne
synthesis problem. The four specification technigques car te
categorized as follows:

1. Natural lLaneuaee.

2. Formal Proovlem Specitication.

3. Input—-output Pairs.

4, Example Computations.
Each ot these specirication techniques will be dicussed 1in
the following subsections and ttne relationsnip to a
syanthesis approach will he discussed.

2. Problem Specification witn Naturai Language

A visionary approach to the speciri~atioa protlem is
the use of natural language. Natural language provides a
tast, comfortable metnod of communication whicn ics already
understood by aumans. Implementaticn ot a ratural lareuaee
understanding system ndas proven to be 3 very 2ifficuit
proolem (Glass (4]).

Two forms of natural language are tne spoken ¢form
and the written torm. Understandine spoken language
increases tne iegree of difficulty because tae communicaticr
is in the form ot audio waves. Once the audio dinput {is

captured, it must be converted into anotaer form for further

syatactic and semantic 3analysis. The reader will note tnat

once the audio input nas been capturec an¢ converted tne
problem of writtea and spoken laneudsze becomes tne same.
Tnat i{s, the {internait representation of tne spoken and
written word can be tne same and the problem tecomes one of
inferring meaning from tae representaticn., Future advances
in volce understanding nardware can be expectec and these
aivances may be expected to find their way into use.

A complete natural language understancdias system
would be expected to be able to understand all erammatically
correct sentences. However, natural larguages cdo nct zave
tinite grammars. This <complexity implies a corplete
understanding system cannot be implemented. However, a
system capable of understanding a sutset of natural language
canp prove useful in specific domairs. £Lariy examples of
programming tnrougnh natural language dialogue 1s precented
in 3 survey by Feidorn (5]. Curren: workx on urderstacdine
natural language may be found in Biermann [S5), anc Walker
1?].

In conclusion natural language understancing 1is a
ditticult prodlem that can ©obe solved only in 1limited
domains. The use of natural language in proegramming has been
shown to be possible by Heidorn [»}, and by Biermann [6) 11
linited domains. The systems developed up to tocay nave been
experimental systems and the resulits will atia in
understanding tae problem. Natural language programmine

systens will not be availabdle for industry tnr at least a

19

decade. Finally, we present the example Eiermann 1¢]
describes as a natural language specification for a preblenr.
Tnis exanplie 1s quoted from nis paper on natural langvaee
programming. Its intent is to give a feel ftor proerammine in
nitural language. Taols example does nrnot specity tne
aleorithm that 1s to be used althouen a natural languaee
programming system would be capapble c¢f accepting such a
specitication.

"Wnen I ask for a status Treport on a

doctorial student, give me his or her year

in grad scnool, source and amount oY

financial support, and waich core exams

have been passed. It the student has beegun

a tnesis give mne tne advisor a4and tnesis
topic. :

3. Formal Problem Specifjiz3tion
The seconi technigque is formal specification ot tne
problem. As the name implies, the input is in a more rigid
structure tnan natural language. Tnis tecanique allows tne
user to convey the benavior ne desires tne syvntinesized
program to have witnout specityine the alegorithm that is to
pe used. Snitn [8) gives tne following definition for tne
form ot a tormal specitrication ot a protlam A.
"A(x) = z such that z ¢ S & P(z,x) wnere x ¢ D &
I(x) wnere D and S are the irnput and output data
types respectively, and I and P _are tne input anc
output conditions respectively.

An example ot a formal prooblem specitication for a program

to compute the integer square root of a nonnegative {integer

n may ve found in Manna and Waldinger (3].

"sqrt(n) <== FIND z SUCH THAT
integer(z) & z%%2 = n < (z + 1) ** 2
WHERE inteser(n) & ¢ =C(n
In tne above example n is an element of tne input 2ata type,
2 is an element ot the output data type, sqrt is trhe problem
nane, 1integer(n) & @ =<¢ n 1is tae input condition, and
integer(z) & 2%%2 =C n < (z+1) *% 2 1s tne output concition.

Fermal vproblem specification and its appiization to
tne program syntnesis protléem can best te explained tarousn
examination of the work by Manna and waidineer |[|9], Manra
and Waldinger ({19]), and Smitn [8). Altnougn all of tne work
is similar in that the tormal specitication i{s chaneed 1into
an appropriate program by some form of vrewrite. It is
valuable to differentiate the approaches by their rewritine
metnods.

Tae first example 1is tne system of Marna arnd
Waldinger [3). Tneir system, callied a deductive approacn,
converts the tormal speciftication iato a proeram in sorve
target language. Their approaca, “"combines tecnniaues of
unirication, matnhematical 1induction, and <transrormatiocn
rules into a single system. Tae ftollowing 1is an obrief
explanation ot this conversion.

A structure is needed to contain initial arnd
intermediate results ot the conversion process, Tnis
structure 1is call a sequent. The seyuent 1s 3 tableau
containing two lists. The first list 1s a list of assertions

and the second 1list is a list of goals. FEach element 1in

21

i e

eitner list may nave an outpul expression associratec wita
it. Figure 1 represents a seyuent as a tatle. Ea~-n rew in
tne table may contain either an assertion or a goal bdHut not
both., Fieure 1 is tne initial sequent tor the integer square
root probiem given above. Tne 1input condition ras teen
placed in the assertion list and the output conaition placed
in tne goal list. Tne output variatle is assoclated witn tae
output <condition in the output expresssion column. Tnis
initiation action assumes the input condition is true and a
search 1s attempted for tne truth of tne goal or output

condition.

sqrt(n) <== FIND z SUCH THAT
int2ger(z) ane z**2 =C n
and n < (z+1) *= 2
WHERE integer(n) and ¢ =< n

| Assertions | Goals | Output

! | : sqrt(n) |
! integer(n) ! ! i
! ani ! | ;
i ¢ =<Cn | : :
f ! integer(z) ! !
| } and : |
H | z®%2 =C n | z '
| | _ and ! %
i i < (z+1) | l

Fieure 1. Inttialized Sequent ror the Square Rootl Probdlem

During tnis searcn it tne seyuent ever contains & row where
the assertion can te trivially snown to be talse or the e2oal
snown to be true and if the outpul expressior ror tnat Tow
contalins only primitives tfrom the tareget laneuaege then the
output expression 1s taken as the desired syntnesized
prozam.

Once tne tableau 1is initialized, tne system’s
deductive rules are applied to the assertions and goals. The
application of these rules will cause tne creaticn of new
assertions and goals and associated output expressions. The
rules may then be applied to the new goals and assertions
until ttne condition for a program 1s =satistiea, The
application of the rules chanege th entries in the tableau
witnout changling the meaning of tne tatleau. We recommend
that the interested reader review tnhe orieinal worx tor 2
description of the rules and their application.

Tne attraction of tnis tneorem~-provine tecnnigque 1is
that tne resulting program can be precven correct by the sare
steps useéd to create it. Currentiy tnere is not 3 running
implementation of tnis technique. One ot tne implementation
questions is determining wnat rule to apply at eacn step in
the synthesis process. This problem r~an be viewed as a
search through ail possible sequences of rule applications.
This searcn space may tecome astronomical for any relatively
complex program since 1t may require hundreds ot rule

applications. #nat 1s needed 1s a mecnmanism tnat cam control

23

—

the search in a reasonadble trashion. The rorm oft control may
pe neuristic in thnat tnere is a feel for wnhere a rule sacuid
be applied. It this intuitive teel can be quantizec, then
this technijue may pecome practical.

Earlier work by “anna ancd Waldiager [1¢) on tne
DEDALUS automatic programing system also Trequired tormal
problem specitfications. Tne DEDALUS system, an i1mplemented
automatic proerammine system, utilized only <transtormation
rules, A tranformation rule simply rewrites a portion cf 1tiae
specitication 1into another equivalent rorm. The continuous
application of these rules would eventually result in a
program in the tareet language.

4. Input—~Output Palr Specification

Input-output pairs 1is a metnoa ot descriring a
problem witn examples of 1input and output bdenavior. For
example, it someone wanted to describe 3 program to compute
the Fibonaccl numbders taen ne could supply trne input-output
pairs.

(1, 1)
(2, 3)
(3, 5)
(5, 8)
(8,13)

The goal of a synthesizer system i1s tn determine tne
desired program from the examples of the 1input-cutput
benavior. One approach 1s to enumerate all possible programs

in the target language in order and test ea~h proeram tor

the desiredi dbenavior. Tnat is, test each enumerated pProgram

24

by 2ivine it the input from eanh ot the 2yamples ang see ¢
tne proeram will sive tne associated ouvtput. Tne enumeration
will 9produce the ~correct proeram at sore poirt tut you
cannot determine i{f an arbitrary program can Jrcauce tae
iesired henhavior {see Biermann {11)). Tnerefore, tne
following taeorem is given by PBiermanr, “Tne proarams far
tne partial recursive <functions cannot te generated rrom
sample of input-output benavior. A large class of proegrans

may be interred from examples of input-output pairs proviaesd

they bdelone to the class ot progerams where the haltine
problen is 1ecidable, Smitn (12 and Summers {13] nave
looked at the synthesis ot LISP programs ftor erxample
input-output pairs. It has been shown that a restricted
class of LISP proerams can be syntnhesized from example pairs
without enumeration over tne class. The reader is irvitec te
review Biermann {14} and Gold (15] ftor <tneoretical
backeround {ntfermation.

5. Example Computations

Program specificaticn using example ccmputations
allows more 1information to be ottained from tne user. An
example computation is a sequence ot instructions, without
an explicit comntrol structure, which the user provides tae
system in order to descride the pbenavior hne wants f{from a
program. FEramples are a good communication metnod wnicn

people use toc describe new concepts or explain new

1 processes. To describe 3 problem to the computer the user

uses tne availavle 1instructions and provides an example of
wnat he wants dope. Figure 2 snows an eXxample computaticrn
that demonstrates now to compute tne ftirst 14 Fitonacci
numbers.

In Figure 2 the two operand instructions (MOV, ADD)
pertform the action on the two operaads and leave the result
in the first operand. For example, it A = 2 and B = 3 tnen
ALD A,B would result in A4 = 5 and B = 3. 4ill ot 1tne
instructions perform action on some variables execpt tor the
START, HALT, and NOTE instruction. START and FALT flag tne
begin and end of the program respectively. The NCTE
instruction 1s providing intformation on tne reason tfor tne
execution of tae next instruction. ‘

This metnod of specitication depends on trhe user 1o
supply more {nformation about the protlem, includlirne the
algerithm to be synthesized, Tne alegoritnm 1s implicitly
detined by the -example <computation <that 1is egiven. This
specification tecnnique saould be contrasted with the
previous technioues. Note that the tormal specitfication and
the input-output pair specification cnly required the user
to specify tne desired benavisr witnout specifying tne
algoritam, Thus it cap be claimed that these twec methods
intentionally ignore information tnat the user nas, assuming

that most users have an idea ot the tform of the aleorithm,

26

START (STAKRT) !

“ov A,1

MOV b,1

MOT C,1¢

FRAINT E

LCH C

ADL A,=

PRINT &

ZCR c

ADD B,A

PRINT E

DCR c

PRINT A ‘
PCR C :
NOTE O = ¢

HALT

Fieure 2. An Example Computdtion

Tne primary contriputor to tne understanding of
program synthesis nas been Alan #. Biermann (see Bisrmann
and Krisnnaswany [16) and Biermann, Baum and Petry (17)). In
particular, Biermann (16] provides a tormal detinition ot an
algoritom tnat will syantnesize programs ¢from exarple
computations,., The aleoritnm and variations nave proviced tae
pasic structure upon whicn tnis tnesis nas oeen daeveloped.
Brietly, tae algoritam 1identifies tne conditions tnat may
nave inadvertently (or purposely) bdeen lett out ot the
computation., A condition 1s a predicate as aefinea in
predicate calculus, That is, ap entity ¢tor which a truta
value may be measured. Once tne omitted conditions nave bdeen
inserted, tae algoritan finds a lavelling for tne
instructions suca tgat a program with a minimum naumpber of
instructions 1s produced. To explain tnis lavelling, assume
the iastruction ADD A,B appears in three ditftferent locations
in an example computation (see Figure 2). Suppose 1t was
xnown that there has 1o D€ two occurrences ot tae
instruction. Tnen two of tae instructions could ©be labeled
wita & 1 and the otner instruction laveled witn a 2 to
indicate that the {nstruction laveled 2 1is dittereat trom
tne instructions lavbeled 1. Finding the labels for tne
instructions in the example coOmputations requires an
enumeration searcn of all possibie labellings. The labelling
selected 1s the first lavelling tnat produces & program that

is deterministic.

28

This aleoritnm 1is comp 2te and the synthesized

programs d&re sound. Completeness means tnat tne ajgoritam

can synthesize every possible proeram. Soundness mean tnat
tne synthesize program will correctrly execlrte tne exampie
used to construct 1it. A disadvantage of thnls syntnesis
method is the aleorithm is an enumeration search and i{. the
worst case will require exponential time on tne lengta of
the example computation to tind a solution. Tecnniques nave
been developed to speea up this searcn that will proauce
satisftactory response tor most pratical programs.

6., A seneral Aputomatic Programmer Design

Before leaving tnis section on automatic program we
wish to discuss a desigmn for al automatic proerammer that
uses at least two of tne specification tecaniques. Tne name
ot the system {s PSI and was desiened by a egroup ot
researchers at Stanford ‘s Artificial Intelligence
Laboratory. The researcn eftfort was headed by Corcell Green
{(8]. Green nas presented a nhign level aesign o0f an
autoprogrammer tnat identifies some ot the more 1mportarnt
areas that neei tfurther researcn. Green admits that the
design was an etffort to tfocus d4tteantion on somne of tnae
sub—areas of the overall synthesis probdblem. His modular
design does focus attention on difterent aspects of tne
problem. The desien decision to split the overall probdlem
into two main sub-problems of acquistion and synthesis is ot

particular 1interest. Tnis desizn cnoice allows work to

29

~ud

proceed concurrently on two nard problems witn tne intertace
retween the problems being some intermeaiate Tepresentation
of the probliem,

PS1] is a Kknowledge—based preogram understanding
system osreanized as a colliection of interacting modules.
Fieure 3 details the nrieh level modular desiegn ot tne PSI
system, Tne PSI design divides tne system ints two groups.

The acquisition eroup intertaces with the user and collects

tne specitication g£iven by tne wuser wnhile 1ttne syntaesis
group produces a prosram in some tareet lanzuage that meets
the user’s requirements. Communications between the 1two
major groups 1s tarough an 1intermediate representation
called the program model. The goal of tane acquisition eroup
is to accept tne user’s specitication by eitner natural
languagze dialoeue or by traces, and present a unitied entity
to the syntaesizer &roup. The 1implementation of the
syathesizer group 1s then simpliriea ©btecause ot tne
consistent representation 1t receives. Since the user’s
input 1s converteil into an iatermediate representation tnat
is supplied to tne syntnhnesizer group, tne user is ftree 1o
switcn from one specification technique to another auring
proeram specitication.

Tne overall interaction with tne user is meant to ve
through natural lansguage dialosue. Since natural language

understanding 1s not currently witnin tne

39

weldoad
19819

fged*@] ux1saq JeTINDO, >, 1Sd

dnodzs 13.JS3UIUAS

-

Vo 139dxy!

1 Aoua1o 133y !

—— — — - —— - o e S

tazadxg!
jautvoy)

T3POKW
vI3014 AMHHHH

——— o o - —— . ——— S — " — - S = -

‘¢ adndyd

dnoan uogrgsinby

T3POW 43sf}
1Ja3di§ 3sInods 1}

——— —— s — o —— T " T T

\
L]
}
)
|
i
i
]
i
! +
t
1
[}
]
1
;
m e !J3131d}
' “:mnnmﬂ,!.lv_.lum::
luteuoq) 4..||!.~wm.~m.$
_ —————— ————————
]
i
' :mun...:f | oo
'3uyprIng! {1Jadxg|

T3toW |¢——P| 3O®I]}

—— - T —— -

31

Yy

¢

LR

state of the art, the system must interact in a subset ot

natural languvarge limited to a particular aomain.

The system—-user interaction is to appear as natural
as possible, Tne <system nas been designed 10 incluvae a
mixed=-initiative dialogue capability whizcn means the user or
tne computer can assume the dominant communication role at
ditterent times during the discourse. Thnis allows the user
to provide as much knowledge as he can to aelp tne syntaesis
process and allows the computer to assist tne user by asxing
questions or proviiing responses. Tne system develops a
curreat model of tne user and a model of the context taat
assists the system 1in determining wnen to assume the
initiative and wnat guestions to ask tne user.

A partial implementation was completed in 1376 that
tacluded tne syntnesis expert and the efficiency expert trom
tre synthesis sroup. The acquisition eroup moaules nave
proven to be a more i1ifficult assignment and only portions
ot the acquistion group nhave been implementea. Tne important
point of tne FSI design {s that 1t provides a modular
iivisiun of tne program synthesis problem tnat neips provoke

study into tnese sub-problems.

C. OBJECTIVES

Automatic programmers, which synthesize proecgrams trom
example computations, require conditions to be explicitly
defined by the wuser 1in order to genergte programs witn a

minimumn numoer of instructions. Previous worx (Biermann and

32

Xrishnaswamy {16], and Biermann (18)]) has reavced tne
nunber of rejquired conditions, btut nas not eliminatec tahe
need for the user to explicitiy state a minimal set of
conditions.

The expilicit aefinition of conditions is not 3 natural
part of an exanple comnputation. Tnat 1is, one would not
normally give cortrol structure intormation when usine
exanples to explaln now a task 1s to be pertormed. Our
objective 1s to provide an environment where the user may
define tne tasks ne wants accomplishea witnout explicitiy
derininz the <control structures tnat specity tne tlow of
execution in a syntnesized program.

We will implement an automatic programming system tased
uporn the example computation specification method in order
to study the feasibility ot 1dentifying conditions from user
actions., We l1imit this study to the domain of text editine
in order to provide a well detined area ia wnlch to work. It
i{s hoped that the results of our ettorts may provide insient
into tne overall problem and generate furtner researcrt wnicn

will extend condition identitrication to otner domains.

D. THESIS ORGANIZATION

The thrust of this thesis is the developement ot methods
for the automatic construction of conditions necessary for
the proper synthesis ot proesrams trom example computations,
Example computation is one approach to the probdlem of

program synthesis. Chapter One introduces tne reader to

33

v

program syntuihaesis ang gives a drief nistorical perspective
ot the evolution of this rield of study. Cnapter One also
provides a comparisopn of tne difterent proposed approaches
to tnis problemn.

An automatic programmer nas been implemented 10 support
thlis researcn, Tals synthnesizer was developed to vse tne
example conputation metnod for program speciticarvion.
Chapter Two 1s a detailed expianation ot our pértlcular
implementation. Chapter Two 1includes a aiscussion ot
techniques we nhave incorporated in our implementation which
speed up tne syninesis process.

Chapter Tnree preseats our approach to generating
conditions given an exanple computation. It descripes
aleoritnms which will eenerate condaitions tYrom a seguence of
editor instructions.

Chapter Four discusses tne resuit of our research. A
orief discussion 1s inciuded on tne merits of tne
syntaesizer wuich we nave implemented and recommendations
are &iven for potential inprovement. Finally, Cnapter Four
presents a review of our work on ideatirication and
construction of condtions from example computations. Areas
rejuirine further researcn have been nignhliented and
examples ot possible applications to otner domains have been

polnted out.

34

J

e e

II. NTH L

A. GOALS

Tnere is a two-fold purpose benind desiering and
puilding tne program syntaesizer. The first d4irectiy relates
to the usetfulness of the syantnesizer. It is noped that by
"layineg tne groundwork for an autoprogramming system, tne
impetus will bde provided that will eventually result 112 a
total automatic programming environment telng davailatle ¢or
the user, Tnils environment 1s envisioned as an interartive
one consisting of several <components: an interface 1o
provide tne user with the means to perform example
computations, a link between tne intertace and the
synthesizer waicn records the user actions and transmits a
trace of tnose actions to tne syntnesizer, tne syvrtnesizer
itsel? whicn produces tne algeritnm in seme internal form,
and, finally, & translator tnay recelves tne internal
representation of the aigoritam and traaslates it 1irto
michine-readable ftorm and/or user-readatle torm. The second
purpose for walcn the syntnesizer {s bdbuilt is to orovide 2
suitable venicle to be wused in the main area ot research
that tnis tnesis explores. If an autoprogrammer can generate
correct aleorithms tfrom example computations, how m™uch can
be done to relieve the user from naving to include brancnine

or looping conditions ir his example computations?

35

B. OVERBVIEY
1. 3Zeneral Descrintion

An automaticz proeramnine system whicn produres
prograns cased uponm tne user’c input of example computations
has 3 natural apopeal. Example compurations are segnennres ¢of
iastructions pertormad ir ar aleoritnpic manner, Ior
instance, it tne user is doing a matrix multiply, computling
the entry ¢tor the resultant matrix involves the sum of
products from tnhe appropriate row &nd colurn oY tre
multiplicand and multiplier matrices, respectively. When
nunans communlcate ideas to eacn other, tneé proper uwse of
example computations otten plays a vital role. It is nare to
inagine trving to explain tne metnodl of multiplving two
matrices togetner, or trylng to explain tne concept of
cet~subset relationsnips witnout vteing atle 1o draw excmples
that ennance the explanations. Tais metncd of communicartion
ceens to be vital to numan uncerstaanding of &aleoritnme.
Since programmers often use smail erample computatiohs wrnile
~odine proerams, it seems that a loeical ap,roa-~rn o
automatic pragramming would consist of the macalne coing tae
actual program synthesis based upon example computatiors
given by tne programmer.

Progran syntnesis is tne act of putiing instructions
togetner 1in sucn a4 way tnat an aleosrithm is tullt wnicn
accomplisnes a cesired task, Crviously, an algoritam whicn

is an exact replication of tne sequence »f instructioncs will

accomplisn tne task, tut it 1s uninteresting since it cannot
be generalized to accomplish a set of relatec tasks. For
example, a linear sequence ot instructions whicn multiplies
two 2 x 2 matrices togetnher will oniy work for 2 x 2
matrices; nowever, by allowing loop constructs apd 11f-tnen
constructs, an algoritam can be produced wnich performs tne
more zeneral task ot multiplyine any two matrices wita legal
row and coiumn dimensions. So, In the case of the matrix
multiply, the task of the program synthesizer is to produce
a general matrix multiply alegoritam given the example

computation for a 2 x 2 matrix multiplication in some form

such as:
cl(1,1)] = af1,1) = ®v[1,1}) + a[1,2) = b[2,1)
cf1,2) = a(1,1]) = bl1,2] + al1,2] * v(2,2]
c(2,1] = a(2,1} * b(1,1) + a2,2) = o(2,1]
cf2,2) = a[2,1]) = p(1,2] + a[2,2] = bv(2,2]

Generalizing from tne example computation also
rejuires some means of noting when the array bounds nhave
been reacned for tnis example. In otner words, conaitions
nave to0 be interposed between some instructions waere a
change in the flow of control for tne algoritam is
necessary. An 1nput trace 1is detined as a Ssequence of
tastructions and conditions wnicn describes the example
conputation, In the matrix multiply example this mignt be

accomplisned tnusly:

e e

Cl1,1] = o
c{r,1) = C{2,1}) + A[2,1) = B(1,1]
cl1.1) =c¢(1,1) + a(1,2] = B[2,1]

COND - col index of A = col size of A

ct1,2) = ¢
c{1,2}) =¢(1,2) + A[2,1] * B[1,2)
cl1,2) =c1,2) + A[1,2) = B(2,2]

COND - col index of A = col size of A

cfz,2§ = c(z2.2] + al2,2] = B(2.2]
COND - row & col index of C = Dimension of C
STOP

The program synthesizer used for this thesis s
designed around concepts and ideas on syntaesizineg a proeram
Ziven example traces as described in reference (17).
Previous researcn, references (16, {17}, and (18], seems to
indicate that correct proerams can be syathesized on 1tinhe
basis of relatively tew sample computations, but trat tne
amount of time required to do the synthesis grows very
oguickly as 8 function of progran complexity.

2. Trace Coding

Tne syntnesis procedure is domain independent; that
i1s, the 1input trace can be coded 1into any consistent
representation, and it will not attect the operation ot tne
syathesizer. Since the synthesis procedure is independent of
the input trace representatior, alphanumeric characters will
be used to represent instructions and conditions. Tney are

distineuished from each other by their position within the

38

trace rataer taan
example, an ‘a’
condition. Witnin
instructions are
trace of a routine

strean nient bve:

It <the

iastruction

by tneir symbolic representation. Fer

mient represent an instructisn or &

the instructior +s2t itselt, 1idertiral

encoded as 1identical symbols. & simpie

to tind all positive numbers iz arn input

L =92
READ P

COND -~ B 1is negative

A=4+1
READ B

COND

B is neesative

A =A+1
READ B

COND - B 1is positive

PRINT B

A=A+1 1s represented by a ‘p’, eacn

occurrence of taat instructior in the trace will nave to be

represented by a

L4

b, The reason for tnis constraint is

obvious. Since tae synthesizer only receives a trace ot 1tre

exanple

execution,

it cannot determine wnetneyr A=A+l is the

same instruction beine encountered repeatedly iz a loop, as

it 1s {in ctals

example, orT

whetaer there are several

independent ocrurrences ot A=A+l, Filgzure 4 is an exampie of

a typical coded

are conditions apd tne

input trace. Tne left-rand column entries

rignt-nand columr entiries are

39

instructions. Figure 4 is read as state ‘s’ transistions on

” ’

coandition ‘x’ to state ‘a’ wnica in turn transitions on x’

to state ‘b°, and so fortn.

transitions states

S M2 b M N MG P M M
WRMRDANRODROoDL VOOTODODoOown

Figure 4, Input Trace

3. Input/OQutput Trace Representation

A Moore-type representation, as defined in [17}, can
be used to higrnliznt! certain features that must be dealt
with when producing an algoritam ¢from an example trace.
Throuzhout the rest ot the discussion, Moore machines and
algoritnms will be used synonymously. Conditions relate to
transitions and 1instructions relate to states of the
macaine. In fact, tne function of the synthesizer can be

viewed as taat of determinine a minimum-state deterministic

nasinnnsiit i

4¢

Moore macnine equivalent of a non~-deterministic Moore
machine. Representine input traces as Moore machines will
often show the non-deterministic structure of the example
trace. This non~determinism must be Tresolved by tne
synthesizer in order for an aleorithm to be generated.
F{gure 5 1is tne Moore machine representation of tne inout
trace ot Fieure 4, Notice that at node ‘b, tne trace s

’ 4

non-deterninistic. Transition ‘y° leads from node ‘b° to two

’

dirterent nodess similarly, tramsition “x° leads from node
‘D’ to two separate nodes. Figure 6 1s tne daeterministic
Moore machine which has been constructed by our synthesizer
based wupon thne input trace egiven i{in Figure 4, The
non~determinism has been resolved by splittine state "3’
into two states distingulished from each other by an 1integer

prefix label. The asSiegnment of ¢the pretix label is the

mecaanism used by the synthesizer to prevent
non-deterninism. In orier to accomplish tais assignment, the
syntaesizer uses an enumeration tecanique. Each instruction
{5 assighed a prefir lavbel in a manper that maintains
determinism and assures that the alegorithm will correctly
execute the input trace. It is easy to verify that tnhe
deterministic Moore machine of Fieure 6 will execute the

trace.

41

e

Figure 5. Non-aeterministic Moore Macnine

1s
X y

o
H
'

y X y
(o
y X X X

OJRC

Figure 5. Deterministic Moore Macnine

43

C. SYNTHESIS PROCEDURE
1. Function

Tne functior of the syztaesizer ourosram 1is 1o
orovide a mininmum-state, correct proeram consistent with tre
input trace of tne exanple computdtisn., Tne <vninecis
process will ¢te <completed wnhnen it 1is determined whi-n
occurrence ot a labelled 1nstruction corresponis o eaca
particular 1instruction in trhe {nput trace. Ir order to
accompiish tnis =zoal, tne synthesizer is ta<icaliy
structurea as & deptn-tirst search algoritnm. Bacgup &r:s
tixup mechanisms exist to enhance the search proceiure wnen
pruning nas not kept tnée algoritnm from traversing a
rtruitless branch ot th2 search tree, The sear~n me~cnanism
attempts to acssien a latel to eacn instruction in <ucn a
manner that tae generated algoritam remairns tecantcally

sorrecty that is, rnondeterminism is not allowel tc exist and

~

the original trace can siill te =2x2cuted. 1 numper ct

t

techniques 2xist within the syathesizer wricr 3it pruznine of
tne searcn tree, and therety mage 1t possible to <vntinesire
more complicatea programs in 3 reasonahble amouant of tirve
tnan could otnerwise ove expected from & general enumerédtion
technique, These tecnniques otfset tne major disadvantage of
exponential erowtn of the search space as a “vnction of
input wnicn is found 1in a general enurerative search

technique.

44

2. (Concepts
Certain detfinitiors and concepts must bhe presented
betore the actual aleorithm s discussed. Iz order <o
facilitate tn2 discussion, it is «rnecessary tc retfer te
Figzure 7. Fach level 1in the fieure consists or in
r - -jinstr d r 2, refsrrez to &s arn
I-C-1., ln Fieure 7 tre leftmost Syrnol under I-C-1 15
referred to 2as the leading insiruction ¢t tne triple, tne
middle symbol is the condition, and the rigatmost svmbol is
tne trailine instruction. Tne trdailines 1instruction at Level
{ becomes the leadine instruction at level {+1. So t=xis

4

input trace represents tne instruction-condition sequence ‘s

”

ransr’ra...

level I-c-I
1 Sra
2 ans
3 sra
4 ada
& axa
o] aya
7 . axa
g anr

Fieure 7. Iastruction-Condition-Instruction Triple

Two levels 1 and) are said to belong to the same

couple-~class it the elaments of the level are the sare,

45

Instruction elements of tne trace waulcn are in tne same
couple~class may bpe assigned tne same prerix lavoel durire
syntnesis if tne assignment does not cause non-determinism,
For example, e#iven tne trace in Fieure 7, levels 1 and 4 are
in +ne samne couple-class, as are leveis 5 ana 7. Difference

set relations are another situation that can exist whicn s

0t 1interest. Tne first two elemerts of level 1 anda level J
are the same, but tne third element is not the same. A
qifference set relation indicates taat tphe leadine
instructions cannot be represented by the same state
regardless of the prefix lapel assigned during syntaesis
because the leadine instruction has the same tiransition to
two different trailing instructions. Again usine tne above
trace, level 2 and level 8 tall ianto tnls category. In 1tnis
situation, the indiex 8 would be entered into the difterence
set for level 2. By implication, tne index 2 1is also in tre
1iftrerence set tor level ¥, althousgh, in practice, it is not
entered.

Once the initisl couple-class intormation and
ditrtference set information nave peen determinea, acditioral
dirference set inrormation can be obtained tnrougn tme

chaining pature of differencing. For example, Suppose the

trace consists of tne one snown in Figure 8. Thnen tne Moore

machine representation of this trace is snown in Figure 9,

46

e e e

index trace

o) axa
6 axa
7 ays
= axa
] axa
1@ ayt

Fieure 2, Chainine ot Ditfterence Set Helations

Figure 9. Non-deterministic Input Trace

Tnis macnine 1is obviously nondeterministic since
state ‘a’ transitions by ‘y° to two difterent states.
Difference set resolution requires that tae index tror ‘ayt’
be 1in tne difference set of “ays”’. Since tnat requirement

causes difterent states to represent the ‘a’ in “ayt’ and in

4 L4

‘ays”, and furtner since tne trailing ‘a’ in tne preceding
level 1s exactly the sare instruction, the preceding levels

now satisfy tne aifference set relation. The leading

47

iastructior ard tne condition are the same, tut tne trailize
iastruction in the I-C-1 triple is ditfterent since tney nave
previously ©been assiened t0 @& ditfterence set relation.
Therefore, tae lead instruction must te labelled with a
ditferent prefix during assignment and similarly, tne levels
above them. So the Moore machine will now be deterministic

and in the following torm.

Figure 1¢. Deterministic Trace

Given a partial trace derived ¢from tne example
execution, taere are numerous Moore macnines that ~ar be
constructed to satisfy tne trace. At one erd of tne
spectrum, 31 program c¢amn be constructed such that each
succeeding state 1s assigned 4 diftferent prefix latel. Tnis
method always vresults im a straiert-line precerar. Facn
instruction nas one transition entering it and ore
transition exitine from 1it. Allowine this method produces
the maximum size program consistent witn tne input trace.
See Figure 11. Tnis is not & particularly desiratle metnod
since it does not recognize loo0p structures that can

significantly reduce the size of tne program. Adaitionally,

4B

it hides the basiz structure ot 1the aleoritnm, Tre major

advantage, of course, 1is that absolutely no search is

required to produce 3 deterministic macnine.

condition instruction

- a x ¢ X
: a

X a

x a
Figure 11a. Trace Figure 11b.Program

Figure 11. Straigant—line proeranm

On the otner end ot the spectrum, a preeram can te
constructed sucn tnat each identical instruction receives
the same pretix label. This method takes tull advactaee of
loop structures, and will resuvlt in a minimum state macaine.
However, such a metnod willi seldom prodjuce a deterministic
machine; tnerefore, it will not produce a satistactory

algoritnm. See Figure 12.

level cond instr

1 -

2 X a

3 p 4 3 y

4 x a

: o (1e)—(15

6 Yy b y
Figure 12a., Trace Figure 12b. Program

Figure 12. Minimum State Machine

Tae bpest solution lies somewnere rtetweer these
endpoints, A reasonable tirst guess at the number of states
rejuired to produce a ieterministic macaine withiz tais

spectrum can be made by establisnire a lower touna on tne

nunber of states. Tne cardinality of the instruction set is

detined as the number ot dirfferent instructions appearing in
the trace. Using tae above figure as an example, it r~an te
determined tnat tne cardinality ot tne instruction cetv 1is

two; tnat is, taere are two daifferent instructions, “a’ and

L4 ”

by, in tne trace. Tnis measure provides an absolute lower

bound on the number of states required in the rinal ma-~nine.
This lower bound can dbe refined by determining a Lower bound
on the naumbdber of states needea for each individual
instruction. Once again, using tne above figure as an
exanple illustrates tnis comcept. Tne 1instruction ‘a° at
level 5 must be dirterent than the instructions at levels 1
tnrougn 4 bvecause of difference <set resolution, or else
nondeterminism results on the transition “y . Theretore, irn
order to maintain determinism, tae instruction “a’ must re
allowed at 1least two states. Summation of tne lower touncs

for each of tne instructions glves a lower bound on the

total naumber of states required for tne macnire. For tnts

particular example, the proeram would be senerated 35:

Fieure 13, Instruction Set Lowesr Bounds

It tne searcn space 1s viewed as a tree ctructure
then the 1levels 0ot the tree c¢an be associated witn tre
instructions by assignine toe tirst instruction in tne input
trace to the tirst leva2l, tne second iastruction 10 the
second level, ana so tfortan. Tae ctrancninz tastor atr eacn
level 1s the state lower bound computed for the irnstructicn
seen at that level. The oprefix label assiganea to tne
instructionr is represented by tn2 specific branch us=2¢ 19
traverse to the2 next level,

Tne idea of providinge @ Lower bound on tne numter ot

states leads to an jteratively expandine depth—=trirsy searcn.

Wnen all possible combinations of pretix labels nave been
tried, but tne algorithm remains non-deterrinistic, 1tzne
lower bound is incremented ard the search 1s resterted from
the top level. Wnen the lower bdound 1s increased, the search
tree odtains additional paths to the final solution 'ty
ifncreasing tae odrancaing factor associated with one or more

instructions, The deptr of a successtul search into the 1tiree

51

ts restricted by tne lower touna on tne ngumber of noces

required by the deterministic macnire., Only wner a peattern
0f prefix assignments nas been mace wanlcnh allows the
algoritnm to remain leterninistic and all ot tne
instructions in tne original trace aave Dbeen assiered pretrix
lapels will tne syntnesis terminate, Tnis mecnanism prevents
a straient-line model trom beine output as the aleorithm
unless 1t is tne only one tnat can satisty the inpvt trace.
More importantly, it provides the minirum-state

deterministic macaine capable of executing tre irput trace.

D, SYNTHESIZER STRUCTURE
The synigesis program 1is subdivided into two primary

modules: static processing of the input tracey ana 4dynamic

processineg of tne information extracted from the input trace
by the preprocessing, or static processing pnase, Static
processine provides i{ntormation such as couple-classes,
difference sets, and lower bounds on the numter of Tacaire
states. Dynamic processinz uses Knowleige 1inneritee ftrom
preprocessing to guide the search mecnanism to a final
output of the aleorithm. These two modules will te discussed
in turn, and the primary mechanisms 1involved will Dbe
amplitied.

1. Static Processing
Statie processing can be conceptualized 3s
consisting ot taree main functions: (a) accept the input

trace; (b) preprocess the trace ¢tor dirterence sets,

52

couple-classes, anda state vbounds; ana {(c) prepare a trace
table for fturther use by dynamic processine. Cnce tnis
preprocessing nas been accomplisned, the static mecaule is ro
longer necessary 1o th2 syntaesizer.

In the current coatieuration, the static module
expects to find tne iaput as a sequence of
instruction-condition~-instruction triples. Figure 14 {s an
exanple of an input trace.

level trace

anp
psa
aga
ayr
IST
rsr
rra
aea
ayt

CrAao P N r

Fteure 14, Typical Input to Static Processor

Eacn 1line consists of & triple, for examnple “anp’.

’

The “a’” represents an instruction, the ‘a° represents the
condition wnicn causes the program trace to transition to
the next imstruction “p’. For eacn level, tne rirst elemert
represents tne same instruction as tne last element of the
preceding level, This is easier to see if tne apbove trace 1s

represented as a Moore machine 1in which the nodes are

4 [4

instructions and the conditions are transitions. State “a

4

transitions on condition “n” to state ‘p’ wnich tramsitions

’ 4 ’ 4

on condition “s” to state "a” wnich transitions on cordition

’ 4

2’ back to state ‘a’, etc.

Fieure 15. Moore Machine for Input Tra-e

level trace c=C difference set

1 anp - -

2 psa - -

3 aea 1 {g}

4 ayr - {3}

5 rsr 2 -]
6 rsr 2 -

? rra - -

g aga 1 -

] ayt - - H

Figure 16, Intermediate Trace Table

Bach occurrence ot an instruction symbol 1n the iaput tra-e
1s represented by tne <same state at tnis point 1in tne
synthesis.

Once tne input trace nas been acceptel, static
processine can begin. Static processineg consists oY
deternining tae level indices associated witn eacn
couple-class and with each difterence set. For tne trace of
Figure 195, tnese are snown in Fisure 194,

Tnere are two coupie-~classes in tnis trace, Tney are
[(aga] at levels & and 8, and [rsr] at ievels 5 and 6. The
renaining levels are not assigned to a couple-class ©bdecause
no other levels match witnh tnem. Couple—class intorration is
useful to the dynamic processor for daetermining torced
assigannents and dynamic non-equivalence. These ideas will re
discussed more fully in the section on dynamic processing.

Difference sets exist tor levels 3 and 4. Level 4
nas a difference set wnich contains the index 9; trhat is,
tne element at level ¢, “ayt’, must nave a ditfereat pretix
lavel on ‘a2’ tnan tne element at level 9, “ayt’. It tne ‘3’
is not latel leda difterently during tae syntanesis,
nondeterminism will result siace the same transition would
lead to different nodes.

Difference set resolution is & very powertul
mechanism for ensuring deterministic benpavior of the
algoritam, A consideradbie amount of tne pretix lapel

assienments to the nodes can be resolved using 3ifrterence

55

v T iy e

sets. Notlice tnat level & appedrs in tae ditfterence setr f¢ar
level 3 even thougn levels & and 8 are in the sare
couple-class., At first tnis appears contradictory since
ejuivalent couple=class Bnames imply that the ejlements are
tnoe sane, but difference set existence torces tne lead
instructions <to be different. Tais points out the relative
power of couple-class ircformation and dirference set
intformation. Ditference set intormation 1s 1mmutaole.
Couple~class information only hints at equivalence. In tais
particular example, the entry at level 3 was caused by tne
chaining ettect ot diftrerence set resolution, Notice tnatg
since tne “a’ at level 4 must be difterent tnan tne ‘a’ at
level 9, and notice that since the trailine “a” at level 3
is, by definition, tne same as tne leading “a’ at level &,
the trailing “a’ at level 3 cannot be tne same as tne
traiiing “a’ at level B; tnerefore, ievels 5 and & cannot be
in tne same couple-class.

To compute the lower bound on the number of states
in tne algoritnm, tne 7inimum number ot states neeaed for
each dinstruction is summed. For tnis same exarple, tne
instruction set consists of {a,p,r,t}. The tounds tor p,rT,
and t are eacn 1, Tne bound for “a’ is 2. Tnere must be at
least two difterent occurrences ot “a’ rrom the difterence
set resolution. Therefore, tne minimum number of states with

which a deterministic Moore machine can be constructed tor

tnis trace is 5.

56

Finally, static proressine passes all the
information concerring tne 4{input <trace to tne cynamic
processor via a trace table in the ftollowine torm., Eacn
level nas only one associated condition and one associated
instruction., Since difterence set {inrormation 1s associated
with the lead instruction in an
instruction-condition-instruction sequence, it 1s entered at
tnat level. Since couple—class intormation 1s associated
witn the entire instruction-condition-instruction sequence,

1t is associated with tne trailineg condition~instruction

pair.

level condition instruction c-C difference set
1 - a - -
2 n P - -
3 3 a - {8}
4 g a 1 19}
S y r - -
6 S T 2 -
? s r 2 -
8 r a - -
39 £ a 1 -
1¢ y 4 - -

Figure 17. TraceTavle

2. Dynamic Processing

Dynamic processing involves assigning prefix lavels
to the states of the machine. In tnis way, separate
occurrences of tne same lnstruction are difterentiatea. Tne
dynamic processor is the search mechanism tor the

syatnesizer. It operates in suca a way tmat, at any poinmt 1in

57

the syntnesis, tne portion ot the trace previously prorcessed
represents a detverministic M™Moore macanire. In orcer to
maintain the d2ta2rminism, dynamic processine steps tnroueh
taree pnases: (1) assignment o0f tne prerix label to tae
instruction; (2) ditference set resolution, ani (3) dynamic
equivalence assurance, Additionally, eacn of thesée pnases
rave built in fixup and backup <conditions associatec witn
them, Tae fixup/backup conditions encountered durine
difference set resotution or dufing dynamic equlivalence
checkine are indicators tnat, it tne current assienments
renain tne san®, a nondeterminism will occur 1in future
assienments. AS such, they inform the pruning mecnanisms ot
the search algorithm.

An inteeral part ot the dynamic processor 1s tne

failure memory. It controls tne searca. Tae failure memory

may be conceptualized as a L x M matrix wnere L is tne row
size and corresponds to the number of levels in the trace.
Eacn row nas M columns wnere M i< equal ts tae lower bound
assiened to the {instruction contained or that level o! the
trace. An entry into tne ¢failure memory at some level 1 and
some column 3, where 1 <= 1 <= 1L and 1 <=) <= M, prevents
the assignment of } as a prefix label for the instruction at
level i. When a taillure memory cell contains an entry it 1is
called a valld cellj otnerwise it is invailid. Fach cell of
tne failure memory is a two—-element entry. The structure

factor is the tirst element. It indicates which level ot tre

58

trace caused tne entry. Tne free state factor is tmne second

elsment. ASs tne name indicates, tais element is a tunction
of tne numbder of free states availaple at tne time of
assignment. The specifics ot the tailure memory cperation
and tne nature of fallure memory entries will be discussed
throughout the rest ot the section as <cach phase of the
dynamic processor is discussed.
a. Label Assignment

As previously mentioned, latel assignment is tane
first function provided by the dynamic processor. A lave]
assignment can ve eitner forced or darbitrary. Additionaity,
the assienment can result in the creation ot 3 new state, a
lapel-name combination not seen betore., A forced assignment

occurs when the instruction at the current workinge level is

a member of the same couple-class as an 1instruction at a
prior level, and the lead lastruction into totn of those
levels nas tae same label assignment, Tne current workine
level 1s defined as tne level nt tne trace wnicn contains
the most recently assiened pretix label, dtut dittereare set
resolution and dynamic eguivalence checkirg nave not bpeen
completed at that level., An example is eiven in tne trace
shown {in Figure 18B.

The label at level 7 1is torced by the lavel
assignments at levels 4 and 5. Notice that the {i{nstructiors

at level 5 and at level 7 are in tne same couple-class,

59

level condition instruction o kte! lavoel
4 a a - 2
5 n T 3 1
S o 3 4 2
7 n T 3 .1
8 T a 4 2

.indicates torced move

Figure 18, Partial Trace Labelling

and that the 4instructions at levels 4 and 6 nave tne <amne
prefix label. This condition forces tae instruction at level
7 to have tne same pretfix lagel as tne instruction at level
9., The Moore machine representation ot tne partial trace is
snown in Figure 19. The assignment at leveli % is also forced
tor similar reasons. By detinition, any torced assieznment
iavolves previously assigned states, ladel-instruction
combinations, tnat have Dbeen sSeen betore; tnerefore, ro

forced assignment can result in a new state.

Figure 19, Partially Determined Moore Machine

€0

Tne failure nemory can be used in conjunction
with forcea assignments to signal a backup condition to the
se;rcn. It twtne failure mnemory entry correspondaing to tre
label assiznment at tne current workine Jlevel is valid, then
a contradiction results from the forced asslgnment. Suppose
that the trace table and tailure memory are as snowrn 1in
Figure 20, and tae foerced assignment at level 8 nas just
peen made. Tne entry “1.1° at row 2, column 8 of tne failure
memory 1s 1interpreted in tne tollowine manner. The inteeer
to the left ot tne decimal 1indicates tnat the entry was
caused by the current assignmeat at level 1. The “1° to the
right of the decimal point is thne number of free states + 1
available waoen tne assignment at level 1 caused tne tailure
memory entry; tnerefore, wnen tne entry was made there were
no free states availadle. A free state is one wnicn nas not
been bound 1o a particular instruction.

Tne assignment dat level 8 is forced. In other
wordis the sequence o0f the previous assizaments causes the
prefix laovel of the instruction at level ¥ to bpbe a 2.
However, the ftailures memory <contains an entry at row ®
column 2, F¥(8,2). Tnis entry indicates tnat tne irstructicn

L

at level 8 cannot be assizned the label ‘27, tor it it were

to be assigned a “2°, a nondeterminism wiil result. To
resolve tne conflict, backup 1s 1initiatea wuntil the last
unforced assignment is found., In tnis case, the backup is to

level 6.

61

The assignment at lsvel 6 will be changed and tne search

will coatinue trom there.

Trace Table Failure Memcry
level cond instr c=c¢ lavel 1 2 S

4 a a - 2 - - -

5 1 r 3 1 - - -

6 T a 4 2 - - -

? n r 3 .1 - - -

& r a 4 .2 - 1.1 -

Figure 2¢. Trace Tabdle/Failure Memory Contiguration
for 3 Forced Assigzument

If tne assignment is not forced, tne ftailure
memory trow correspondine to the current workine level is
searcned for tne first occurrence of an 1invalid cell. An
invalid cell is one which does not contain & trailure memory
entry. If a cell is invalid, tae assigonment of a pretix
label correspondine to the tailure memory column inaex for
that cell is possible on that level of tne trace, The column
nunter of tne first 1invalid cetl Dbecomes tne lLatel
assienment ftor the irstruction at that level. For example,
suppose level § is the current working level and the trace
table and failure memory have the confizuration saown in

Figure 21.

Trace Table Failure Memory
level cond instr 1 2 S 4
5 r a 1.1 4.1 - -

Figure 21. Trace Table Entry Snowing
Arbitrary Assignmesnt Metnoad

Tne first invalid eantry in tne failure memory on

row 6 is in column &; tnerefore, instruction “a’ tor ievel 6

will be assigned a prefix lavel of 3. Tnese non-torced
assienments may result in the creation of a new state; that
is, a label-instruction pair not previously assignea during
the synthesis. If, at some truture point in tne searcn, &
backup is initiated that reaches tais level of tne trace,
tne backup mnecnanism will not stop to perform & retlry. At
aay point {n the synthesis, all previous levels have
received assignments ©vased on the constrainrt that 1ine

minimum number of states has ©been wused consistent with

maintaining determinism; ctaneretore, assigning a ditrferent
pretfix label to a state which has been detined as & new
state only changes tne name of the state, and does not
change the structure of tne atgoritnm. Since tne structure
of the algoritam nas not been chapged, the cause of the
nondeterminism is still present.

One other type ot assienment should be mentioned

at tnis point. Pseuvdo—-assignment occurs wnen tnere 1s only

63

. — ,,,,,___,______“ -

-4———-—-———-———-—_____“

one invalid cell left in a tailure memory row at a level
otaer tnan tne currént worKking level and taere are no tree
states availabdle, Altnhougn pseudo-assigament does not
immediately cause a label to be assignecd to the instruction
at that 1level, it does simulate & look-ahread mechanism tor
tae searcn tecanique by triggering difference set resoiution
and dynamic equivalence checkine as itr that Jlevel ot tne
trace were assigned a value. Since the pseudo value is tre
oniy value currently possible tor tnat level, it a backup or
fixup condition is encountered during psesudo assienment, tne
assignment mechanism can inmediately try another label at
the current working level; theredy savinz the unnecessary
search of a pata which 1t already knows to be nonproauctive.

Once a tentative label assiegnment nas been madle
to the instruction at the current worxing level, difference
set resolution and dynamic equivalence cnecking can te
performed. Althougn these actioms may caus2 a fixup on the
prefix lapel at tne current working ievel, tneir primary
purpose 15 to furnish intormation to the failure memory that
will nelp euide future label assignments.

b. Difference Set Resolution

Diftference set resolution prevents future
assignments beine made that are Known to ~anse
noadeterminism 1{f tne current assignments remain uncnangez.

Difference sets outline a sieniticant portion ot the

structure of the input trace without regard to lartel

assienments {n that they prevert nordeterminism trom
occurring as a result of the same transition out ot a state
leading to more than one tollowine state. Conrsider TFiesure

22.

Figure 22. Nondeterministic Input Trace

There are several instances wnere diftference set
resolution will force a state to be split into two or mcre
different states. States ‘a’, ‘g”, ‘p°, and “t° all nave
nondeterministic transitions associated with them. The trare
tadle and faillure memory configuration for tnis trace 1is

shown in Figure 23.

’Ef“ "W“‘"'""”""""""'llllllll--u--n-......-.,_..______________qy

Trace Tanie Faijure Merery
lsvel cond 1instr c-¢ difference sey lacel 1 2 2
2 n P 1 {4,11} 1

3) a 2 {5,15,1€} 2 1.1

4 n o) 1 {11} 2 2.1

5 s a 2 -~ X 1.1 3.1
6 n r 3 - 1

4 s 3 - ~

8 v g - (9,18,2¢}

9 T 2 4 112,2¢}

12 r -3 4 {2¢}

11 r P 5 {21} 2.1 4.1
12 S 4 - {13,14,17}

13 S t 5 {14,117}

14 s t 5 -

1% S a 7 - 1.1 3.1
18 n r 3 -

17 n T - -

18 s a ? - 1.1 3.1
19 n r 3 -

22 p g - -

21 r e} 5 - 4.1
22 - a 2 -

Figure 23. Trace Tabdle/Fallure Memory Configuration
After Assienment at the Fourtn Level

As dynamic processing proceeds witn labdbel
assienmants, 3dirtsrence set resoluticn occurs. Litterence
sets are resolvea by making an eatry into the faijure memery
row at the level correspoading to the daittference set
element, and the column corresponding to the pretrix labsl
assigned to tne instruction at tne level from whnicnh tne
ditference set is beine resolved it the cell has not already

been made valid tnrough a previous assigunment. For example,

it tne prefix assignment at level 1 is a "1, tne tailure

memory entriss are made 1in column 1 at levels $,5,15,1°.

66

Similariy, wnen tne assignment “1° is made at level 2,

tajlure entriess 3re made at levels 4 and 11. Now when the

assignnent at level 3 is made, tne aynamic processor will
not try to assien a prefix value of “1° since the tailure
menory cell at (3,1) 1is valida. Tae assiznment will
automatically bte “2°., Notice tnat at level 5 tne previous
assienments have caused the pretix label to be a “8°. In
otter words, tae failure memory nas caused tne searcnh tree
to be pruned So that an assienment of “1° or “2° will not te
tried. Either one of tnese assiznments would fnave resulted
in nondeterminism teing introduced into tne trace at level

6.

Figure 24a, Prefix Latel Equals 1

v

Flaure <24b. Pretix Lapel Equals 2

Figure 24, Nondetverministic Pretix lLabel Assignments

wnile tailure memory entries are teing made
under difterence set resoiution, it is possibla for a row to
nive all cells valld except sane, Tnis nas veen previously
defined as a sitwnation leadine to psaudo=-assieament. This
situation nas occurred at level 11 in tne example given in
Figure 23, When such an occurrence happens a look=-anead

mechanism 1s triggerea to resolve the difference set at tnat

level., In tais example, the faiilure memory cell at (21,3)

has been validated with an entry which indicates the ~urrent

working level as level 4 wnen tae pseudo—-assignment occurred

at level 11. Another situation which can occur ia a tailure

menory row 1s wnen all the entries in the row become valid.

68

This condition {is =zalied an 1incipient tence. shen a1

incipient fence existls and tanere are no tree states
availanrle, then no assisnment can be made atv that level,
This condition is called a fexnce.

Since the searcn mecnanism Aalways Knows tne
level from which it is do0ing look-anead ¢ty ditterence set
resolution, 1t 1s able to pertarm a fixup on tne lapel
assignrment at tne earliest possidle time, A firup {is
accomplisned by increrenting tne prefix lavel bv one. I¥ an
entire row i{n the tailure remory be~omes valid and there are
no free states availarle a fixup must be pertormed on tae
label assienment at the current workine level. It the label
is left the same, tnen when the search Teaches the tenced
level, no assiesnment will be possible, Each time a fixup
occurs, all entries made in the fallure memory as a result
ot the previous labdel assienment are deleted, and entries
are then made based on tne new label.

. Dynamic Equivalence

Couple-class information turnished by static
processine 1ids in the determination o¥ dynamic
nonequivalence. Dynamic nonequivalence can occur during the
synthesls at any level below tne current working level wnen
the couple-classes are equal. Dynamic equivalence results
when instructions in tne same couvple-class nave been

assigzned the same pretix label. Counstder Fieure 25. The

I-C-I triples at levels 5 and 6 and at levels 11 and 12 are

laza]; therefore, they are in the sare couple~ci3ss. The

’

instruction a’ at level 5 anas bteen assigned a pretix ct

4

‘2’, and the instructicn “a’ at level S nas peen acsiened a

I'4

prefix of ‘1. Now, 1if tne instruction at level 11 is
assigned a prefix of “2° and tne instruction atv level 12 1s
assiened a oprefix of ‘i1, dynamic equivalen~e will c-cur.
Furtner, tne assienment at level 12 will be Porced. Dvnaric
non-~equivalenss results when such an Aassienment screme
causes non~determinism, Dynamic eyquivalence crecking
functions as a8 look-anead mechanism by preventing tne futnure
occurrence of a forced assignment walch will result in
nondeterminism,. Suppose tne syntnesizer 1is inspeciing tae
trace 1in Figure 5, anl nas just assiened tne instruntion 2t
level 6 a prefix of 17,

Notice that leveil 12 is in tne same couple-~class
as level 6, Since the instruction at earn of these levels is
in tne same couple-class, the possibility exists trnat tney
may be the same instruction. It the tastrustion at level 11
is assigzned a latel of “2° wnen the worKking level reacnhes
that part of the trace, then the assiegrment at level 12 will
be a forced assignment of ‘1°. However, an entry nas already
been made 1in tne failure memorvy at (12,1) wnicn indicates

that the instruction at level 12 cannot be assiened a pretix

lavel of 1.

70

TraceTable Failure Memory

level cond instr c-¢ latel 1 2 <
5 4 a 1 2 4,1 - -
6 -4 a 2 1 - - -
7 g a 2 - - - -
11 f a - - - 6.1

12 e a 2 - 4.1 - -
13 n a 3 - - - -

Figure 25. Trace Taple/Faiiure Memory

In order to avoid this contradiction and a
backup, dynamic nonequivalence processing causes an entry at
(11,2) of tne failure memory which corresponds tn tne
labelling of “2° given to the instruction at level 5. Once
tnis 1s accomplisned, wnen tne workine level descends to
level 11, an assienment ot “2° cannot be made and as a
result, tne assignment at level 12 will no lonzer te ¢orcea
by dynamiec =2quivalence wnicn e#ives the synthesizer & chance
to try otaer assignments that wiil maintain determinism cf
the aleorithnm,

Pseudo-assignment condaitions and fixvp
~ronditions can orcur in the rajilure memory as 3 result ot
validation of all but one of the failure memory cells in a4
row in the same manner that they occur in dirterence set
resolution, Adiitionally, 2ynamic egquivalency and ditt¢erence

set resolution can interact to cause fallure memorv entries

71

in the following manner, If a taiiure memory entry is made
by difterence set resolution at any level wnicn 1is in tne
same couple-class as a level previously assignred a pretix
lapel, ana 1t tne failure memory entry bpreveats tne
assignment that will cause the instructions tc become art
of the same state, then dynamic nonequivalence will resvlts
theretore, an entry must be made in the *railure memory to
indicate tnis condition,

3. Backupn/Fixup

Tne discussion of backup and fixup conditions nas
heen saved until 1last. The tasic idea bdehind constructine
the syantnesizer 1is <to provide a&s mucn information as
possidle to the search mechanism, and thereby dire~t tre
label assignment witn a minimal number of retries. Witn tnis
in mind backup and tixup become 1ast resorts.

The fixup operation attempts to resolve
nondeterminism by 1incrementing the lavel at tne current
working level wnen a contraaiction occurs. It trhe newly
incremented ladel 1is not @& legal assignment nr does not
correct tae contraiiction, taen barkup must te initigted.
The fixup operation cannot be attempted 1t tne assifnment at
the current workine level {s torced or it the assienment
created a new state, In either of tnese cases, a fixup
operation would leave nondeterminism in the aleoritaom.

It a fixup tails, or cannot be attempted, backup is

initiated. Backup must be initiated from tne current workine

72

level wnen any level is discovered wnich <contairs one ¢c¢f

these conditions:

1) Tae label assigrtment is forced and the taillure memory

cell corresponding to tnat level an2 lavel is valid,

2) The label assigrnment causes a contradi~ticn arna
represents a new state, or
3) There is no tree state available tor the instru-sticn
at a particular level, and all entries in tne tailure
memory row at that level are valid.
Tne backup begins at tae current working level regardless c¢f
which 1level trigeered the mechanism, ana continues until]
none of the tharee conrditions given above are present., At |
tnat level a fixup operation is attempted ana tne search
begins anew,., Any entries into the failire memory whicr were
caused bty levels greater tnan or equal to the new current
working level are 1invalidatea by resettine the tailure
memory entries to (9,2). Additionally, any dssifnments are
deleted alone with tneir side-etrtercts, su~nh as anrotatiors
on forced assignments aned new states. If backup rauses the
workine leve]l to be decrerented to zero, a free state 1is
adied for the use o0f¢ the first instruction needing mere

states than initlally allotied as tne lcwer dound.

73

II1I. Rk ESSOR

A, PROBLE™ SPECIFICATION

The program syntaeslizer expects a set of triples wnhere
each triple is an instruction, a <condition, and an
instruction. Biermann (2} nas snhown tnat conditiorns
inadvertently or purposely omitted bvy tne wuser may re
inserted 1into a trace, The algorithm tor iasertion ot
conditions collects tne set ot atoms seen on the transitions
tor an instruction. An atom is an entity wnicn nas a valuve
of eitnher “true’ or ‘false’. A condirion is composed by
logical conjunction and disjunction operations on atoms. For
example, an atom may be “c <= ¢°, dbut a condition may te ‘-
<=6 und 3 =4°. A set of minterms is computed trom tne set
ot atoms and one ot the minterms 1s inserted atter -each
occurrence of that instruction in tae trace. It {a,b} is a
set ot atoms, then tne set 0t ninterms will te
{{a,v},{-a,0},{a,-0},{~a,~d}} wrnere - stands tor loei~al
negation. It nas been snown in reterence (16] tnat anty one
ot the minterms can be .nrue tor ea~n occurrence ot a
transition from any single instruction.

One problem witn the algorithm 15 that it 1is 1incapanie
of inserting conditions if tre user nas failed to supply ary
atons after a particular instruction. For example, i1f tne

user should specity instruction Il trollowed by 1instruction

74

I2 in one part of tne trace ana instruction Il tollowea tv
I3 in another part ot the trace, but tne user talils to

provide a condition atter eitner occurrence ot Il, then tae

3leoritnm will be unable to generate a condition *or I1. It
is assumed that Il does not appear with 3k atom elsewnere iz
tne trace. The syntresizer will force two states for I1 %o
resolve any noﬁdeterminism. This mecnanism is tully
explained 1in Section II. If conditions nad teen suppliea in
the above example, the ditrference in the two programs would
be tne naumnter of states assiened to instruction I1. FiFsure
26 shows a partial computation without explicitly exvressed
conditions along witn tne associated syntnesized program
tragment. Fleure 285 assumes that I1 does not appear
elsewnere in tae trace., Figure 27 is a representation of tae
same partial computation except tnat tne conditions cl and
c2 have been explicitly expressed. Tne computations ir totnh
figures are tne same, and e€eaca proeram fraement wiil
correctly execute either trace; tneretrore, the proerams Tust
be equivalent programs with respect 1i»n program hrenavinr,
However the proegram in Fleure 27 1s minimal iz that it
contains tewer states because the user explicitly supplied

the conditions.

75

(S,...,Il,lz,...,Il.IS....H)

Example Computation

Ork@o@rv DA AD

Syntnesized Proeram

Figure 26. Computation without Expilicit Conditiors

(s,....,11.01.13,....Il.I3.....H)

Example Computation

oo WD,
G) T O,
)

Synthesized Program

Figure 27. Computation witn Explicit Conditionc

We intend to show that tnere are mechanisms wri~n ~an bde
used to automatically generate tne necessary conditions for
the correct synthesis of an aleoritrm produced by an sxample
computation witnout tne user explicitly defining them. The
prodlem may be 2escribed as trollows, Given an example
conputation without explicitly defined conditions, inter
tnose conditions necessary 10 control the ¢tiow of
computation in a manner such that tne synthesized oproeram

wiil demonstrate tne benavior desired by tne user. In srder

1o racilitate the solution to the protlem, 3 ~onaition will
be viewed as a function tnat returns 3 value ot “true’ ¢r
‘talse’ when called rather than 3 loeical operation on
atonic toolean entities. The preblem can tnhen be tncuzat cf
as constructine a ftunction.

Very little intformation 1is available to tnhne current
version of the synthesizer when the user provides only a
sequence of instructions. Certainly not enougn tc gererate
minimal programs as described in Figure 27. This led us 1o
search tor other sources ot intormation that would allow us
to construct the necessary conditions. W2 soon realized that
the instructions dissued by +the user do not exist in a
vacuum. Tnese instructions manipulate data. It the entire
conputer memory, 1including registers, 1is viewea as tne
domain of interest, then execution ot an instruction always
changes this state. Intuitively, tne domain also reflects
the reason that the user decided t0o execute a particular
instruction. A searcn of a space of tais size in order te
determine tne reason is impractical; nowever, observing only
those data el=aments aftected by the sequen~e of instruections
can often be quite practical and can c<ignificantiyv reduce
the search space.

We cnhose the text editing domain as tne domain of
interest since we felt that it would be sutficiently
interesting to warrant application of sviatnesis techniques.

This domain was selerted because, first, tecnniaues

developed in tnis domain may he general enougn for extensicre
into other domains, sesonily., the world for tals domain ceén
be descrited as tne set of all caaracters cortained {in 2
particular text ¢tile wnicn maxes tthe werld ¢inite, and
tinally, the {instruction set is small enouen to re
ma2ndageable,

Altnough our primary researcn is direrted toward
studyineg tecaniques to apply to automatic conditinn
generation, we feel that the syntnesizer could be a powerrul
text editor and could provide some usetul features not
normally sesen in conventional text editors. Fxtended
features could 1include tne ability to capitalize the first
letter ot every sentence, the ability to <capitalize all
srall Jetters in the text, the anility to icdentify a strine
ani perform some operation before, atfter or on it , or any
combination ot these editine actions.

Tne working nypotnesis is to anave tze user process tne
text file in 3 normal manner and have the syntnesizer 1inter
a program ftrom nis actions. Two requirements were levizi4
upon tne nweer, Tne tirst requirement oa tne vser is tnat nae
must inform tne syntnesizer wnen ne desires to have a
program egenerated so tnat tne syntnesizer can teein
monitoring ta® user’s actions. A great deal of time was
spent trying to figure out methods tnat allowed one ~feneral
mechanism to ©be used to monitor tnhe user’s actions and the

resultine cnanees in tne text file. Since we coulad nrot

78

produce such a mecnanism, 3 second reguirement was levied on
tne user, This regquirement recngnizes a dasic cistinction
between two difterent aspects ot text editine: context tree
supstitutions, arq context sensitive substitutiorns. Ae
detine a context free environment to be one 1in wnica tae
cnaracter to bde operated upon is not dependent on characters
around 1t. Capitalizing all occurrences ot small Letters is
an example of 3 rontext tree operation. A contexy sSensitive
operation 1is defined as an operation in wnich tne action to
pe pertormed on 3 character Or sequence o0t cnardacters
depends upon otaer characters around tae main character cf
interest. Capitalizine the tirst letter ot every sentence 1s
a context sensitive operation. Conaition interence ir a3
context <sensitive environment is innerently more ditfticult
than in a context free environment in that the conditior
must be constructed from events whicn require a look-anead
c3pability not inherent in the synthesizer, The user will te
?ree to switch from environmenrt to environment at nis
convenience. The synthesizer will create proegram segments
from each environment whica can bpe used to construrt A

conplete prozram by a8 poSt-processor.

B. DESIGN FOR A CONTEXT FREE ENVIRONMENT
1. Overview
Programs that operate on 4 single entity can he
constructed by the synthesizer. Fieure 28 SNowWS the

construction of a program from a trace 1intended to

79

communicate that the letter 4 should be ~apitalizad
wherever it appears 1in tne text tile, Tne celumn lavtelled

“trace’ contains triples ot the torm instruction, conditior,

instruction. B is tne start instruction, R 1is tne move rignt
instruction, C is tne capitaiize or cnange instruction ard S 1
1s the stop instructicn, respectively. The -conditions ¢tor
tnis trace are tne cnaracters seen in tne text file priar tn

the execution of thae second instructicn in e€3acn triple, The

special condition "©” is tme null cordition, ana tc alwavs
inserted after the start instruction.

Tne generated program will correctly execute tne
trace that was used to ~onstruct it, and by -examination of
the program it can be snown tanat the program will convert
all d°s to D’s in a text file consistine of tne chnaracters
A, b, C, 3, F anid G. Tnere are no arcs avaliable for otner
characters in tne cnaracter set. In order to ~fenerate a
program to perform the same function on an artitrary tert

file, the user would be forcea to £ive an example ot tne

desired transition for every chara~ter in tne character set,
Since 1t is desirable to relieve tne ucer of tne |
chore of providing an inoriirate number ot examples in order
to completely specify tne function, & method 1is required
that utilizes 3 few examples ot the types ot conditions that

are to appear on tne arcs to generalize tne conditions into

a more compact and complete torm. It & zeneralization can be

found, the multiple arcs may be replaced with a more general

~ondition and, theretore, correct vroerams «an 02 ~reated
witn fewer examples. However the combination of arce reilween
nodes must te accomrplished so that determinism is meintained
or the syntnesizer will not create a mimimum state macaine
cipadle of performine tne desired tunction, Tnat means tnat
the generalization techniyue must ©Dbe able t0 nandle
confiicts prnpertv,., The arcs in FifFvre 28 tnat originate at
state R and t2rminate -3t sState R a3ppear to ~orsist ot
elements from tne capital letters and small letters. The
feneralization of {x| x ¢ capital letters} U {z| z € <~all
letters} would appear to be a reasorable replacement tor all
of tne R to R arcs. If tnis generalization was made a

4

contlict wouli result because the lettar “d” is alse an
element of tne {z] z € small letters}.

Trace Synthesized proegram

===

oY WUoWw
LNEP R N R e B B B
V.0 0O iU o

Figure 28. Syntnesizer Actior

2. Structure of the Condition Preprocessor

The preprocessor is designed to accumulate knowledze
trom the traces it is provided, then use tne Knowledge 10
construct meaningful conditions. The preprocessor scans the

input trace looxine at tne instructions and characters tnatg

821

are Sseen batore the
ot iastructiors trom
nave the instruction
extracted. Attached
sharacters that were
then analyzes the
generalization can
associated wita cacn
The natural
pra2processor tc be

modiule performs thne

instructions. This prase extra~ts pairs

tnhe trace, Tne trace in Figure 28 would

patirs (%&,R), (R,R),

(va\ ard (C'P)

to ¢cacn of these pairs is tne set ¢f

seen tetiween tne pair. The preprncessor

intormation to
be made fram tnae
instruction pair,.
iivision mentioned
1ivided 1into two

scanning function

determine it a

set ot cndaracters

absve allows tnhe
modules., Tre tirst

wnile the second

module analyzes tze information and avplies 3 heuristi~ to

provide tne most

general condition

possitle. The

irplementation ot the preprocessor will bte discussed later,

but bdefore it can be discussed an erxplanation of the data

structures required ty the preprocessor is needea.

S. Prenrocessor

Data Structur=s

To sinplify

irstructions in this

tne protiem we

domain. Instructions

current locatiion of interest are
instructiors. Instructions tnhat change

ietine two tvpes of

that sperity the

cursor onositionine

tae state ot the

domain are data manipulation ipnstructions. The preprocessor

a~cepts as {nput

associated sejuence

seaquence ot instructions and an

of cnaracteérs. Tne first instruction in

tre instruction sequence is always the

stare instruction

whicn does not nave a character associates with it. The last

o et g

instruction 1in tne <seyuence is alwavs & nait instruct.on,.
Every action pertformed by the user is ~aptured ana appfrisd
to tne instruction sequence list. Tne cnaracter s=2auence 1s
created in narmony with thre {nstruction seouence, In tre
quiescent state the cursor will irdicate a certain pesitien
in the text. When the user perfrforms some action sucn &s move
the cursor rignt, a moritor picks up tae value 1ir tre ol4
position a4and associates tnat value witn the inctrvctinn
executed by tne user. For example®, assume 3 user has a text
file 1in lower case letters tnat ne wants to cnange to aill
upper case letters. Tne user initiates the syntresizer thnen
proceeds across the line of text changine lower case tetters
to upper case letters. For the purpose ot this example,
assume tne line of text 1is ~change lower case to upper
case". As the user moves anross the line makine
substitutions, the condition monitor captures trne acticrs
pertorred and the characters seen. Th2 example line would
yield an instructior sequence ot (B, C, ®, C, R, C, E, C,
.esy C, S). Tne associated cnaracter segquence wouvld te; (c,
C,ny, B, a2, A, ..y o, B). Tne “C” and "BR" in tne
instruction sequence are tne capitalize and move rigat
instruction, respectively. Note that tne capitalize
instruction does not reposition the cursor and wnen tne user
moves the cursor to the rignt, tne result of tne capitalize

instruction is associated witn the move.

Anotner jata structure needed ty the preprncessor ic
the ASCII vector. Tne ASCII vector is a 12&-byte lirear
array with indice< numdered 9 tarouen 127. Kach hvie in the
array is reterenced ty the decimal wvalue or a particunlar
ASCII cnaracter. For example, the array 2lement reservea for

4

tne ASCII cnaracter “¢° 1s indexea bty 42 decimal. Tre arrav
element reserved for the ASCII cnararter “a’ is indexed DOy
6 decimal. Tne vectoar detfines a partition »¥ tne ASCII
character set by using the ftollowineg te~hnique. Tre ASCII

character set has been divided into =2iznt mutually exclusive

subsets.
Subset 0@ Capital lertters
Sudbset 1 Small letters
Subset 2 Numbers
Subset 3 space character <{sp>
Subset 4 Symbols
Subset 5 Punctuatior
Subset S Arithmetic cperators
Sunset 7 Control characters

The subset name is entered into the ASCIIl vector at eacn
cell bty converting tne ASCII craracter to 1its decimal
equivalent and vusing tnat value as tne arrayv irdex. Tne

detault partition is shown in Fieure 29.

8¢

ot 5

e aat

Index J¢ 31 ... 39 65 X6 ... g

[]] [] |) t] { i i t T _-_I-
]]] 1]] [} | [} 1 1 1
f P20 2...1 2] P2l el b !
{ 1 1]] 1 | t {] []
] | |] 1 1} ! [} t 1 (]
ASCII 2 1 ... 9 A B ... 2

Fizure 29, ASCII Yector

Tne cnaracter <ei njerarchy is derined by tne tree
structure in Figure 3@. The tree is related to the ASCII
vector through tne cnaracter subset rames contained on eacn
node one level above the leaf nodes. TFor tne default
pierarcny shown in Figure 30, & zers wonld te entered in the
ASCII vector tor ali capital 1letters, and a 1 wouli be
eatered +for all small letters. It a daifferent partition of
the character set 1is required the user can modiry the
nierarchay or create nls own. An example will te ziven to
expiain now tne modification mav be accomplisned. Assume a
partition 1is desired wnere tahe vowels are isolated into a
set. Assume furtner tnat toe tne vowels are to te subdivided
into capital vowels andi small vowels. The nierar~hy would te
modified bv placing a son called ‘vowels” on trne alpnevetic
node. Attach to the new node two sons, ~alled “Cap-vowels’
and “Small-vowels’, witn arcs to tne appropriate cnaracters.
Relapel tne nierarcny so tnat <iblineg relations are numoered
in increasing order, Finally, initialize tre ASCII vertor
witn the new labelling. All of the modifications can be done
by the system when the user calls tor the moditi~ation The

modified nierarcny 1s snown in Flgure 31.

85

! ASCII !

! Displayabie ! ! Control E
1

------------- f e

- e S - - - -

! Speclal | ! Alvha-numeric |

iaArtth-| |Punc-! |Symbols| {Space! IAlpnavetic! {Numeric'
imetic | |tua- | | ¢ T T By wtatatetts ' '
{Opera-| ltion | -
ftor b1 5)
I 6 | e <5p>
"'.0)] .c? ® ee B
ICapital! ! Small |
lletters) {letters)
! /) ! ! 1 |
A v e 0 Z a .o e z

Fieure 3¢. Detault Hierar.ny

86

! Tisplayaole |

-, s gy e s e

- o s i il ey ot - e

| Spscial | !

- S S m—— oo =

iCap ~ |
lvowels,
] L] \
| - |
3 ... 8 B ,,.U ¢
Cap-letter Cap=vowels
less
Cap-vowels

Figure 31. Moairiea

E?

lvowels)

ilpna-nuraric

'Smali-’
VOoWel1s,
Z §

!
i
'
[

— - —

3
<

Q l..uy

mall=vowels

Hierarcay

‘ Small
Lettlers.

T oeesl

Srall-lettesrs
LESS

Srall=vowsels

The next data structure usead ry the preprocessor 1is
the transition tadble. The transitiorn taoble contains tne
knowledge gleaned from scanning tne instruction sequen-~e and
the character sejuence credatea by tne monitor. Fieure 32
shows the tormat ot the transition table. The transiticn
taple 1s an array ot records witz eaca record containing
inrormation on a transition. In the table, I1 ana [2 are
instructicns wnere I2 directly follows Il ir at least orne
place in tne instruction sequence. “Active-sets’ is a tield
that contains intormation on sets ot cnaracters thit nhave
been _observed by tne monitor on the tramsition fror Il te¢
12. The fields “Set-1" tnrougn “Set-n” contain tne value for
set name, tae count of tae elements from tne set associated
witn tne transition anl a pointer tn @ iinked list of tne
slements. Tne records tzat would be created for the tra-ce
given in Figure 23 would be associated witn tne transitions

B to Ry R to A, R to C, C to R and R 10 S.

Figure 32, Format ot tne Transition Table

4. Implementation
The context free preprocessor consist of two main

modules; the scanner and the {insertion modules. Another

important mocule npot part of the preprocessor is the user

88

monitor. Tne monitor gatners tne actions of tne wvyser and
creates two arrays. Ope array contains the sequence of
instructions tne vuser providel and tne oaotoer contains
intformation of what wis true betore an ianstruction was
executed. Tne information tnat is gataerecd 1s tahen passed to
the appropriate preprocessor.

Tne example 1instruction and crzaracter sequences
given in Fieura 35 will be the example used to explain the
mecnanism of tne preprocessor. Figure 3¢ is 1ililustrative or
a collection of actions tnat were performed by some user,
The user’s go0al is: Change all lower case letters in a text
tile 1into upper case letters. The user nas activatea tre
condition monitor, positioned the cursor at the tefinning of
a line of text and moved right along tne line, chaneineg the
lower case letters to upper case wnenever one appeared above
the cursor, Fieure 33 1is an example 0t output trom tre
monitor assuming tne line tne user processeéd was “Tne
aumvers 1, 2, 3, 5, 7 ARE prime.”. Tne first coluvma 1n
Figure 33 is tne character array. It centains the cnaracter
under tne cursor prior to execution of tne instruvction 1n
column two. Coclumn two is a trace ot trne actions pertorred
by the user. The "R™ represerts the "move cursor rignt’
instruction and tne "C represents a cnange without Cursor

reposition 1instruction. Figure 33 can e read as: The

cnaracter in column one was observed and tane instruction in

column two was executed.

Y

inaex cpnaractier inctructrion
vector vector
1 T R
2 n C
3 2! R
4 e C
8 E R
5 <sp> R
? n C
22 1 R
2% ’ R
24 {sp> R
25 2 R
36 . f
37 R R
38 E R
49 e C
49 E !

Figure 33. Monitor Output

The scan module 0t the preprocessor is activatea
when tne user 1indicates tnae representative example 1s
conplete. Let “inst-index’ pe an index for tne inctruction
array taat is inltialized to 1. Tne tirst step is to create
a transition from tne start 4instruction to the ftirst
instruction in the {nstruction array and add trhe transition
to tane transition taoie. Tnis transition will indicate tne
veeinnine of the proeram and will transition to tne rirst
instruction providea on 2 null condition. Tne mocdule then
moves down the instruction array creatineg other tramsitions

and adding taem to tne transition tavle. Duplicate

99

e g 1m0 0T

transitions will not appear in tne tarcle. A trancition is
defined as a pair (I1,I2), Il and I2 are instructions and I2
tollows [1 witnin tne instruction adarray. The 1iastruction
array in Fieur= 33 yields transitions (R,C), (C,R), (R,R).

Tne transitions are censtructed by incexing tanrough
the instruction array. The instruction 4t 1inst-index &nd
inst-index + 1 ¢ftorm a transition. The transition is tne
matcn against tne transition table. If a matcn occurs, tne
character in the <character array at inst-index + 1 is
extracted and its ASCII value is used to ircdex 1into tane
ASCII vector. Thne value stqred in tne ASCII vector 1s used
as an exponent for two and stored in a temporary variabie. A
bit by bit logical OR is performed tetween the temporary
variable and tae Active-sets variable tor tne transition and
tne result 1is stored in Active-sels. Active-setls contains
the intormation ot every set trom the partition that has
elements s2en on thne transition. Tne operation descrived
above allocates one coit tor eacn set in tne partition. If
Artive-sets equals 1 then bit one ot Active-sets is a 1
signifying at least one element ot set 1 nas been seen cn
this transition. A two would sienity tnatv sore elerent of
set two nad been seen and a taree would signity that some
element of set one and some element of set two nad teen
seen,

In the transition table are tields for each set that

has been determinei to dve active for tne transition. Witnin

91

eacn of the <et tields tnere are tnree subtfields, the tirect
is the set namr2, the second 1s 3 count of the elerents seen
for tne set and tne last is a pointer to tne start of a
crircularly linked 1list containine tne elements used tror tne
set. The value that was obtained from tne ASCII verctor 1is

used as a set name and matched against eacn or the <ot

tields’ set name. It the set name matches an entry the

character at inst-index + 1 is addaed to the linked list in

lexicoerapnical order it not already on the Jist and tne
count is 1incremented by one. If a matcn does not ocsur on
tne set name a new set field is createa and civen tne namne
that was obtained trom the ASCII vector, the count {s set to
one, and tne cnaracter is put on tne list.

When the scan moiule reaches the end ot the input,
tne transition table contains an erntry tfor each trancsition
that was seen, Each transition is assoriated with all tne
sets that nad elements seern witn the transition. Finally
eacnh transition 1is associated witn tne actvual elements
througn tae linged list for each set. The {intorrmation 1is
tnen passed to the insertion moduie fnr analysis. Figure Z4
shows the completed transition table and the linked]list of
elements tor eacn set.

Once a completed transition table nas been ~reated,
control 1s passed to the insertion module. Tne insertion
module processes the information in the transition tatle and

assigns a condition for each transition.

92

Set-n

o O~ >U

N e AN
L BN - S T N i

<3>

¢

<2>

'R} a5}

<1>

represents a pointer to

the lingked list neaded by the Same Symbol.

NOTE: The aotation <1>, <(2>, etc.

Figure 34. Completed Transition Table

The Active-sets entries provide an efticient
mecnanism tor recognizing potential contiicts on emanating
arcs. Pertormine a tit bty bit AND on tne Active-sets entries
that nave a common originating intruction yields trne sour-e
of conflicts. The bit positions tnat are on (bit equals 1)
are the set (or sets) that nave rhad elements on multiple
transitions. For example, let (I1,I2) and (I1,13) be entries
in the transition table witnh Active-sets value o tive (¢l¢1l
binary) and taree (¥¢11 binary) respectively. Let ¢ -equal
tne result of tne pbit by bit AND oY tne Active-sets values
given above (i.e. ¢9@1). ¢ 1indicates that trere is a
conflict vetween tne transition (I1,I2) anc the transition
(I1,I3). Furthermore, Q indicates that the set causing the
conflict 1is labelled zero in tne anierarchy of Figure 4@
pbecauyse the on bit 1s in tne right most position wanicn
corresponds to two raised to tne zero expornent. Usine the
exponent to enter tne nierarcany, it can be determinea tnat
capital letters were seen on bdoth transitions, Once all tne
conflicts ftor transitions witn tae same ¢riginating
irtruction are gknown, the contlicts must be resolved cefore
an assignment of conditions can be made.

Extending tne example given above, assume that eignt
capital letters were s=en on transition (I1,I2) and tour
capital letters were seeamn on tne transition (I1,I3). A
partial condiition can be constriucted tor the transition

(I1,I2) as a set difference bpetween tne set of capital

94

R A

letters and the actual elements seen on the transition
(I1,13). Tne partial condition tor tne (I1,I3) transition
becomes the set ot capital letters that were a4actuadlly seen
with tois transition. The initial conditions for taese
transitions tecome the union of tne sets indicatea in
Active-sets as not being in conflict and tne sets created by
the resolution of conticts. Taerefore, tne conaition for
(11,12) ts ({ * | x @ capital letters} - {xix e <capitel
letters on otner transitions}) U {x!x @ numeric}, ana tne
condition for (I1,13) becomes { z | z € ({actuai capital
letters seen} U {small letters})}. In tnis example, it was
assumed tnat tne sets, numneric and smail letters, were an
appropriate eeneralization tor the transition., In practice
it cannot be done without consideration of <the numoer ot
elements that have beenh Seen from the set oa the transitian.
If the count tield tor tne set exceeds a taresholad value for
the set, the generalization m=ay be made, otnerwise tae
elements taemseives become tnhe partial conditior for tne
transition.

After 8 condiition nas been construciea for a
transition, a ¢inal strone =eeneralization technigque 1s
employed. Tne Active-sets value for tae transition again
supplies tne starting ©point tor 1tRis tecanique. Notice
adjacent bits in Active-setrs correspond to adjacent nodes in

tne nierarcny. Theretore, a cnecg 1s made ot itne Active-sets

to see it {t has adjacent bits with a value ot one., It 1t

AD-ALO4 586 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
: CONDITION RECOGNITION FOR A PROGRAM SYNTHESIZER. (U}
JUN 81 J S LAPE: ¢ W MILLER
UNCLASSIFIED NL

2o 2

ap &

does then a generalization may ©bde attempted. Assume tne
condition (({capital letters} ~ {A E I O U} U {smail
letters} U {numeric}) gnas been constructei ror some
transition., Tne Active-sets value for thnils transition must
be seven (2111 binary). with tne detault nierarcny in Figure
52, a generalization to Alpnavetic and tnen to Alpna-numeric
would te attempted. Notice tnat a generalization to
Alpna—-numeric would rai)l bdecause ot a conrliet witn another
transition. Intuitively ({alpna-numeric} - {a, E, I, 0, U})
would be a correct cholice ftor the ~ondition ftor tnis
transition. A general proceaure for Itne construction of
generalized conditions is &iven below.

A set of modes Y = {y , YV, , ...s ¥y } s
generalizable to a node X it the set of node Y ¢torm a
complete and exaaustive set of leaves to tne subtree rooted
at X. Furtner, a set of noies Z = {z,, Z, » eeer Im }o1s

e oW}y J < m, wnere

J

generalizable to the s2t ¥ = {w,, War

each w is a generalization ot a subset Z.

IF the condition = F U F, U ... U F,
where ﬁ =2; - q i=1,n
where q; C 2; (q‘possibly null)

THEN
tne condition is set to W - U q:
148N
wnere W is tne smaillest set
V= {u v Wae eee 4 W) }
such tnat ¥ generalibes lz, 0 2,0 coe v 2Zpt

B

C. DESIGN FOR A CONTEXT SENSITIVE ENVIRONMENT
1. JUverview

Condition generation in tae context sensitive
environment is a more difricult task tnan 1n tne context
free environment. This d4ifticuity arises trom the scope of
knowiedge required to make decisions on wnat a condition 1s
to be. The conditions tnemselves are more complex tecause
tney depend not only on tne cnaracter tnat 1is being seen,
put also depend on characters that precede 3and tollow the
current cnaracter under consideration. The tollowing example
will be used to illustrate tne dirtricuities ana our solution
to this problem. Assume a user wishes 1o capitalize all
occurrences of tne word “time’ in some text file. Also
assume that the word occurs at the bveeinnine, at tre ent,
and in tne middle of sentences in the text fiie. The
question is how to comstruct a program that performs tne
desired function given only the actions the user performs as
an exanple of tne required program.

The assumption about the position ot the word “time”
in tne text ¥file implies tnat tne requested action needs 1o
be accomplished on strings that BRave very dirterent
characteristics. Certainiy, botn “time’ an¢ “Time’ saoula re
capitalized as snould “time,’ , “time?” and “time<sp>’. On
the other nand the string “time’ should not be caplitalized

when it occurs within a word like “sometime” or “timely’.

g7

Any generated program that benaves as zescrited
above must be able to recognize an occurrence of tne string
or some variation of <toe string., The totality of this
intformation must te glued togetner to provide a single
condition that 1is descriptive ot wnat the surroundire
environment must be like before tne action is performed. Tne
implication 1s tnat the condition 1tseltY must be atle to
perfornm ciecking ani look—anead. In other words, the
condition for tne transition to tne operation must in fact
be a proceiurs which responds “true’ whenever the strine ot
interest is recognized. Assume for tne present that tae
strine ot iaterest can be discerned trom the user’s actions,
(a nard problem by itselt, see Angluin [19)) one must woncer
now Ssuca a procedure can be constructed and then inserted
into tne generated program waicn pertforms the tunction of a
condition on some transition in tne proegram. Figure 3% snows
1 procedure whish recoenizes the word “time”. Note tne
robustness of the procedure in tnat it distinguisnes between
the ditferine occurrences ot “time” as mentioned above.
Figure 35 points out that tne problem is not Jjust zeneratine
a .procedure as a condition but also Renerating conditions
within the procedure that is to ve the overall rondition.
Tne arcs labeled ‘T v t” and “<SP> v {punctuation}’ snould
be noted with interest because they provide the robustness
the condition procedure needs. The discovery of arc labels

tor the condiition procedure will be discussed next.

98

i,

)’M'MW

{{ASCII} = {<sp>}}

(»)
“(<sp> v {Punc.})
()

(<sp> v {Punc.})

IRegquested !
{Operation!

Figure 35, Condition tor "time ana "Time .

The monitoring of user actions provides the
iastruction and cnaracter sequence in tne same manner as
done in the context free mode. A consideration was given to
require more {nformation ©be providea by tne monitor,
however, the notion was discarded because it would reguire
tae user to be aware of the functioning of tne preprocessor.
Reguiring tne wuser to provide information to the system
would betray our goal for the system. The user should only
te required toc initiate tne system and tnen pertorm editing
as it the system was not actively monitorineg nis actions. Wwe
feel tne requirement of specifying whetaer tne user wants to
pertform countext free or context sensitive operations is tne
maximum tnat saould be asked. If it were teasitle to
recognize the iifference between the two modes from the
user”’s actions alone, this limitation would te also removed.

Given only tne instruction sequence, the cnaracter
sequence, and the intormation of a r~ontext sersitive
environment, tne first assignment of tne context sersitive
preprocessor is to discern tne strine ot characters upnn
whicn some operation is to bde performed. This is a pattern
recognition problem ot considerable difticuity. Angluin [13]
provides the tollowine theorem, “There 1is an etftective
procedure wnich, wnen given a Ssample S as input, outputs a
pattern p wnicn is descriptive ot S.". The sSample S 1is a

subset of tae set of all strings over tae alphatet of the

100

laneguaee. The etftective procedure is computationaily
expensive anda not inplementationally daesiraple for our
system. The procedure is an enumeration tecnnigue on
patterns witn a length less than tae shortest example in tre
sdnple set S. Eacn of tne enumerated patierns is tested to
determine it it is descriptive of the entire set S. The
longest pattern that is aescriptive of S 1s the most
specitis pattern tor tne set. Ciearly, &8s tne lengtn ot 1tne
of the sample grows, tne npumober of enumerated patterns will
grow exponentially. Angluin [19] states, “In tne general
case, the test pertormed on the patterns is an NP-compiete
prodblem.” . The test sne is reterring to is the cneck to see
it the enumerated pattern is descriptive ot S.

For implementation purposes, we need a mechanism
that talls well short of tne exponential ctenavior of tae
effective procedure mentioned avbove, The text editine domain
has two types of instructions for the purpose ot this paper.
The tirst type of instruction will bde <called cursor

positioning instructions wnile tne second type Wwill re

called data manipulatineg 1instructions. Assumine the text

file is to be represented as a linear array, only one cursor
position instruction need concern us. All cursor positioring
commands such as move left, move up or move down can be
represented as move right instructions. Data manipulation
fnstructions operate on one character and do not reposition

tne cursor.

The metaod we nave adopted for determining thre
strine of interest and the context ot tne string is based on
the above detinition of tne types of instructiors availatle
in tne text editing domnain. The preprocessar scans tae
instruction seguence lookine tor an occurrence of a data
manipulation instruction. The cnaracter asscciatecd with this
instruction {s then taken as tane ¢irst cnaracter otf tne
string of interest. Other characters are added to the strire
by continulng tne scan until multiple occurrences of cursor
positionine {nstructions are -encountered. A nypothesis is
then constructed consisting of taree parts. The (first part
is the ©beginning context. It 1s <constructed ¢trom the
characters tnat preceded the string in the character
sejuence. The second part is the string itself ana tne final
part 1is the =2ndine context constructed from the characters
seen after tne string. For engineering <considerations, tae
number ot characters 1ia the bPteginnire and endirng contert
will bve limited to twenty characters. The probability ot the
context exceeding twenty cnaracters on botn sides ot thne
strine in the text 24itine domain is small enouegn to ignore,.

Once a aypotaesis 1s proposed it is set aside as an
active hypothesis and scannineg ot the input continues. Otner
cases of data manipuiation instructiors surrounded by cursor
positioning instructions will result 1in other nypotnesis
being constructed. ASs these hypothesis are added to the

active nypotnesis list tney are checked for consistency and

i the new nypothesis rauses coatrlicts they are resolveda 'ty
construciing another nypotnesis from the conflicting
hypothesis. To demonstrate this mechanism weé present an
example which will iliustrate tne generation otf nypotneses
and resolution 1into a condition function. Tne exawmpie usea
is the construction of the tunction which will recoenize the
string “time’.

Suppose tne text file contained tne tollowine

sentences somewhere in tne tfile,

The time i{s two oclock.

It 1s time to go to tea.

Time tne runner.

Did you run out of time?
Also, suppose tne user nas specitried the environment is to
be context sensitive and nas beeun to perrorm actions on tne
file. The monitor coulil create tne following iastruction and

character sequence tragments from tne user moving througn

tne text file and capitalizing tnese occurrences ot “time’.

(RRRRCRCRCRCRRRR ...)
(Tne tTiImMeE iS5 ...)

(RRRRRRCRCRCRCRRRR ...)
(It s tTilmMek to ...)

(RCRCRCRRRRR ...)
(TiImMeE tne ...)

(... RRRRRRRRRRRCRCRCRCRR)
(... run out of tTilmMeE?)

Tnis example 1is not to imply the wuser must chanee all
occurrences in the text t'iie but nhe snoule provide enougn
examples trom the tile 1o insure his desires are understood.
I# tne wuser nas not suppliea a distinguisning set cf
exanmples and an incorrect proeram {s gea®rated ne may ada to
tne set of examples.

Scannineg the rirst instruction sequence until tae
first data manipulation instruction results in tne string
‘time’ beine constructed. The resultine nypotanesis 1is tnat
the strirg “time” is witain taoe context of ‘Thedsp>” arnd
‘¢sp> 1s two oclock.’. Tae nypotnesis may bte viewed as tne
tollowine data structure.

Aypotnesis 1:

Begin context: Tnedsp>
String: time
End context: <{sp>is two oclock.
A second hypothesis would be ezenerated tor the next portion
0of tne instruction sequence as snown below.

Hypothesis 2:

Begin context: It is<sp>
String: time
End context: <sp>to =20 to0 bed,.

A comparison of taese two aypotneses 1indicates a
disagreement betw2en the contexts. The conflict is resolved
by determining the longest beginning and endine ~ontext that
agree between the two hypotneses and generate a nypotnestis
reflective of this agreement. By working backward trom tne

last cnaracter in tne begin context for botn nypotneses, it

is possible to ascertain that the only character 1in

R

|
|

agreement is the space. Working f{orward from tae ¢ftirst
cnaracter in the end context tor both nypotneses, again orily
character 1in agreement is the the space. A taird nypothesis
with tne new begin and end contexts 1s generated as tollows:

Hypotnhesis 3:

Begin context: <sp>
String: time
End context: <sp>
This aypotnesis specifies tnat the string “time’
must be preceded and followed by a space., Note tne test of
the hypothesis implies the user i1s allowed to specity ore
string during an example <computation, It is also implied
that there must be a beein and an =2nd context tor the
string. Since it 1is possible to have two nypotheses wnere
one of the context strings do not asree {n any of tne
characters, a metnod must exist to provide tne appropriate
context.
Whenever tne comparison between context 0! two
nypotneses results 1in tne null stiring, & disjunction is
tormed from the characters immediately next to the strine,
For example, tne instruction sequence given above woulc give
the hypothesis:
Hypotnesis 4:
Begin cortext: Did you run out of<sp>
Strineg: time
Enda context: ?

A comparison between nypothesis 3 and nypothesis 4

would result in tne null string tor the end <context. Since

there must be an end context, the disjuction ot <sp> ana ?

195

-

is formed and tnis tecome tne eng context for tne nhew
hypothesis. Generalization tecnniques tnat were mentioneg in
tne section orn context free envirooment ar> toen appiied in
ap attempt to reduce the end context 1o tne most feneral
contexy consistent with the data seen. The only alteration
in the generalization scneme 1s tne lowering of tae
threshold values for {mportant sets. ln tnis example, tne
threshold value for the punctuation set wcula be lowered 10
1 and the endine context would become { x| x=sp&ce or x €
{Punctuatriont}.

The final problem to be solved is tae recognition of
variations in a strine, Examples ot variations of a string
are, ‘Time’ and “time’, or “enclosure’ and “inclosure’. As
meationed, if tne user intends to capitalize all occurrences
of “time’, “Time’ is to be included. Note these vartations
of the stirine become tne compouna labels for tne arcs in
Fieure 35. The system includes a rule that enadles the
recognltion of varlations of strings provided tae user gives
an example ot th2 variation. The rule simply states tnat tne
string lengtn Wwill o0e establisnea to ope as long as tae
longest string encountered durine processing. Again, using
the example, the hypotnesis tor “Time the runner.” would te:

Hypothesis 5:

Beein context: ... T
String: ime
Eni context: <{sp>tne runner.

It has been estadblished by preceding user actions

tnat tne string length for tane nypotnesis saould ove 4, By

1¢6

matchine the pattern 1in nhypothesis 5 witn the strire trom
nypotnesis ¢ {t can ©be determined that the stiring in
Hypothesis 5 should be expanded by insertine & “T° in tront
of the string. Anotner nypotnesis 1s taoen generated wnere
tne string will te toe ¢isjuction tetween the strines “time’
and “Time’. Tne final aypotnesis from the example woull then
ve:
Hypotnesis b:
Begin context: <sp>
String: ‘time’ v “Time’
En1 context: { x| x = space or x € Punc.}
Once tnis nypotmnesis nas teen generated, 1t 1s tnen
used to examine tne ipput for negative examples that can
strengtnen or weaken tne anaypotnesis, Suppose tne inptl
contained the fraegment ... timely results... . Pro-~essine
the input with Hypotaesis 6 would saow a matcn for the
strine, but tne ena context would not agree; tneretore, tne
nypotnesis will be strengthened by cnaneineg the end context
as shown below:

Final Hypothesis:
Begin context: <sp>

String: “time” or “Time’
End context: {x|x=space v
x € Punc. &
X € small letters}

Atter the input has been processed ana & final
hypothesis proposed, the hypotnesis 1s used to construct a
procedure suca as snown in Figure 35. Tne first part of tne
procedure to be constructed {s the transitions tor the

beginning context. Tne states in the procedure are tne

1e7

att o s

1 i ———r——

instructions 1in the instruction set, and the arc lavels
consist ot tne information in ine trinal nryporaesis. A start
state is placed in the procedure with an arc to a move rignt
instruction (R). Since tne procedure is a strine matcn or
look—-anead routine all states otaer than tae start state
will be move rient instructions. Each or trhe states will
nave two arcs exiting them. Tne jabels on t1ese tTwo arcs
will ve the neeation ot the eacn other.

Tne construction {is accomplisned bty placing tae
tirst character of the beein context on the exitine arc
going to a new move rigat state. Tae other arc is labpeled
witn tne negation of tne cnaracter and this arc terminates
at the ¢first move rignt state. Eacn character ot the begin
coptext creates another move rignt state lavbelea as
mentioned.

Tne string from tne nypotnesis 1is then used to
complete the proceiure that has been partlially constructed.
I the string 1is composed of disjunctions, tae characters
are used to form disjunntions. Each ot the disjunctions are
combined with <conjunctions. The final aypotnesis above
provides a string of “time’ or “Time’. Tne conjunction of
disjunctions will be formed as:

(‘T v 1) & (17 v 47)& (m " v 'm”) & (e v ")
Upon reduction the string will be expressed as:
(‘T v “t’) & "1 & ‘m” & ‘e’

Each disjunction ©btecomes a label omn an arc t0 a new move

108

rignt state ani tne negation becomes tne lavel on ar arc
back to tne original move rigat state.

Finally, tne end coantext is adaeld in the same manner
as the btegin context, The tirst cnaractsr pecomes the latel
on the last move rignt statre created trom tne siring and rew
states are add=d for each cnaracter in the end context. Tne

result of these operations is displayed in Figure 45,

109

IV, CONCLUSIONS AND RECOMMENLCATIONS

A, SYNTHESIZER

Tne syntnesizer that nas teen 1implementea ¢tor tnis
thesis will produce programs from example computations in a3
reasonaple amount ot time. The system response tor most of
the traces was within 1¢ seconds or a Dieital Equiprent
Ccrporation PDP-11/5¢ minicomputer., The response time is a
tfunction ot tnhe lengtn o¢f thne <trace and tne rnuncer of
multiple occurrences of a particular instruction or set ct
instructions 1in tne tinal algoritnm, with multiple
occurrences of an instruction attfecting response time the
most. As Biermann (17 nas nroted, tnis ras a nice
implication for prozramming by example Dbecause most
algoritnms d0 not exnibit tne cnaracteristic of havirg a
large number ot instances ot tne same instructioen. In other
words, almost all multiple occurrences of an instructicn 1inrn
an input trace are indicative ot a loop in the &lgeritneT.

In all of the t2st cases except th1oSe tnat requires 3
large amnount of backups, static processing accountec teor at
least nalf of tne total response time. Future meoditications
to the syntnesizer wnich would decrease tne total responce
time could be directed <toward desienine the static
processing stage more efficiently. However, tne trade-otf

petween static processing and dynamic processing must e

11@

xept in perspective, Static processing 1s a linear turcticn
ot the lenegth of 1the trace, whereas dynamic processirne,
since 1t 1s an enumerative searcn tecanigue, is in
exponential functlion of tne liengtn of tne trace,

Another area which should te considered is the dynaric
processing stage. Tnere exists a4 pletaora It recearca
guestions within this area., The primary one being: Can recre
information be gleanedi from tne input 1trace during static
processing whicn will decrease tre search time tor dynamic
processing? Difference sets and couple—~classes provide sc7Te
powerful mecnhanisms for daecredasiag tne amouvunt o! searcn;
however, lower bounds computations cn the number of states
required by tne macnine otten increase the amount of searcn.
Lower bounis are restrictive in nature. They are desiened to
force tne final algoritnm intc a minimum state configuration
which, 1n many cases, causes extra search time. Relaxation
of the lower pounds ccmputation will result in a3 rina}
algoritnm wnlch m3y rnot be expressed in & minimum numecer of
states, bdut which will still oe deterministic. There rient
be better methods of initially computing the number of
states which would result in a closer estimatie ot tne€ actual
nunber of states required for tne ailgoritnm,. Obviously, the
closer tne initial guess i1s to tne actual requirement, tne
less backup incurred, ani, thneretore, the less Search tire

rejuired.

111

Since tne amount ot search requirei is goverrec by tze
tailure memory =2ntries, the more dense tne failure memory
can be made, the more dairectec tne searcn be~omes. So
anotner areda for researcn 1is to determine it more
information exists 1in the failure memory entries than is
currently bteing used. How mnuca information do tne <tructure
tactor and the tree state tactor proviie? Is there another
factor whica would be usetul?

Finally, a more2 general yuestion can oe addressea. Tre
underlying structure of this techniqyue is an enumerative
search. Can the technijue be generalized to 1incliude otner
algoritams wnich are enumerative in nature? What
modifications to tne failure memory are needed? FHow would

dirterence sets and couple~classes be redetinea?

B. CONDITION PROCESSING

The condition processor ¢tront—end 1to the synthesizer
relieves tne user from worrying adout some of tne contrci
structure considerations by automatically generating
conditions. Anotaer adiition whicnh would 1ncrease tne pcwer
of the syninesizer is an automatic loop variabvle generator
as discussed by Biermann (12]. Altnougn the text editine
environment nas ©obeen useld in tnis tnesis worx, tnhe part »f
the condition processor desien wnich deals with a context
tree environment is general enougn tnhat it could be designed

to operate in any domain.

112

Condition generation in a context sensitive ervirenmernt
1s a3 murh harder probtlem turther complicated bdy reguisite

pattern matchaing anda pattern generation. Before tnis type cf

condition.eeneration can be generalized, mucn worg nas to te

done to 1increase 1the efficiency of pattern eeneratior
scnemes, Angluin [19) nas snown a pattern generation scneme
which 1s a polynomial time aleorithm tor pattern generation
with one variabie, pbut tne domain we nave examined will
require 3t 1lsast two variables. There is not a polynomial
tine algoritnm for pattern generation with two variacles.
Heuristic tecnaniques will probabdly be necessary to provide
methods of pattern generation whichn will be tast enough to

be useful over a wide range of problems.

113

uj
up 9 T+ul

$I €9 ¢I
e1 29 21
2l tv 11
I a2 §

;W10 FUTMOTTOS 9u3l uft 39 isnw 3713 Induy am
I32153yiufs a2yl JO UOTIRINITIUOGD IUIIIND 33Ul J0J =/

/%

soeg1 3ndul Sul J0JF dwWeu IT13 |Ul ST uJ,
wedS0dd aua 01 _uj, 3rtd andut aul sadid >,

”

*5158U3ULS 38Ul MOYTOF G1 J3sSn 3Ul SAOTT®
yotum indino jo £13t1dea e sapraoxad siUl
SATSNTOUY ‘€ PUP 2 UIIMIIQ 1137P JI833jul UP ST unu,

(9°3a3z1sauluks 23%) x377dwod
au1l Aq pa1eadd 3ITTF 37qe1Nd3xad 3ul ST ,LIn0o'e, 3IJIIUA

uj} > wnu 1no‘e

:$7 Jazysaviuks aul unJ 03 papaau UNT puRWWOd V] =/

V XIANI4d¥

e s e et

114

@2 HIJAXVW 3UTiops
AAZ INJXVW 3utiapy
LU\, NIO3 [uljiaps

LA\, J0F 9uliaps

/%
s101d YI058p 31e1s 3ratssod age qT0 Pue *‘mgN *XIIF¥V *q3DHO04

SSETO-3Tdnod JTHUTS © JO S1USWITS WNWIXPW 3UY ST WIWIVW
3oeaq 1nduy 3ul ug
PAMOTTE SUOT1o0IISUT Q1USIAIITP 0 Jaqunu wnuwixew 3yl ST LSNIIVW
Jazt1s9uquis 3u) £Aq pa3Tpuey aqg ued
UOTUM S1UGWITI 13S 3JQUIIIIITP J0 Jaquny wnwyIew 3ul ST HIJAYVW
aveJl 1nduy 3yl JOJF PSAOITP UlaUST WRWIXEBW U1 ST INJXVW

‘wexFoad
2U3 10CYINOJU3 PasN aJe UDTUM S3INTPA JUPISUOD 3Ul 3P 3S3UL u/

115

/=
*3o5ep33 induy 3aul ug
uotvionaisuy veutl aul C"UOTIONIAISUY
atauts e uUl1tAa pu?d 1snw a[is U 12Ul FION

*J310031%4UD

J19SY¥ BWes 3yl Yi1lm Ppapoyu aJP Suojiipuod 21e21idnp Tre

pue *J3ioepJPyUd J]JSV SWPS 3yl UITM DPapPoOd axe 3oexy indui 3wl uy
SuU0T19nI13sUT 31eoyrdnp 7TTP 1PUl SuUPSW UOI1e1U3SaId3I 1UIISTSUO)D

*30pJ1 3Ul 1NOUINOIUI UILISISUOD 3Q ISnw Iuypod 3u)
*X31oedeud TIJSV arvaesutad 4ge
Juisn papoouad 3¢ UlO SUOTI[PUOU PUE SUOTIONIISUY Yl

(9oweds J0

@, °3°3) uO1ITPUOD TTnU @ ST @d

TOQWAS 1Ie1S 3nbiun e Sy § J

4 ’

SUOTITPUOD 3yl 9JP UO yYaNOIyl 1o
pUP SUOT1IONJIISUT U1 3IP U] ugnoJul (] IIaum

/x WA UT Past 10D WNU JO 1UNOD x/

/% J4010fj) 31P1S 3314
/% 10102%®} 3Inioniils

/v STQELSJEI] 01 13% J1SU] WOIJ JaJlX

/% 101027TPUT 21015 M3U

/» K1e111QI® 10 pP3doJ0j T3aqey
/%« 21P1S jJo t13aerT

/% 135 B0U3I3IIID

/% SSeto 3atdnod

/» U0T100J1SuUf

/% UOTITPUOD

/% UOTSINO3X adedSa 01 pasn ueadroog
/% S1W1S FNQa3p T3A3T 3TqeiaeEA

/» T3A3T 3UTHIOM JUJIIND

/% Wd UY pbad 102 jOo wnu pasn

/% ST13 anduy woas safdial jo wnu

$WiTISId 1uy

STINJYVW]I1UDWT Ul
m_mao>u<zu_azuu<z_sm

{
%/ i5 Ul
2/ A 1UY |
190318
*®/ CTINDYVW]XPUT 21Uy
_Hazo~<z_mﬁamamcmhw
*/ 131915 JeUd
ve/ $3LOW JEYD
x/ $J0303735 11Uy
*/ ¢THLOAXVW] 13S33t1d auy
»/ $sse) Uy
*/ ¢Qg J°UD
x/ ¢N dIeUd
uczuﬂw
=/ fuo0t11o1pPPIIUOD 10T
%/ tanqp ug
»/ STATAA Ul
x/ f1aqetIe| Ul
#/ ¢qudatd Il 1uy

/% wed3odd 3ul 100UINOJIUL PISN SITQAPTIJRA TRQOTZ 3Ul 3d® 3SAUL &/

@ TION 3ul;i3ps
L9, 070 suyjaps
u, RIN Buvjops

4 4

J€, [L1dYV suyiaps
3, Q9040& Suyjapw

¢ 31d

T4y 3upjovs

2% WIWIVH |uijops
@9 ISNIXVW autjavs

e m e e e ———— . ————— = =

116

}
(6 => 2nap)il

$()DInWVNAG
£()o1dvis
s$(f1)}A%3€)101® = Fnqp
/% Sarqeylea X3pul u/ ey uy
/=
*sale1s Jo Jaquay
WaWTaTW SUl UITA SUIYORW OFISIUTWII3P e st 1oupotd [ewis

3U1 1°U1 Kem e Gyons ut 92PJ1 3ul 031 sysqey 21els gaisse
01 pasnh uylldoare YoIpss [enioe 3yl S} auyssevold ojweuiqg

117

saufuoPw TPUTJd JUl uy pPazgnbaug

$319215 JO JIQWNU 3V} U0 SPUNOQ JIMOT pue ‘uojlewIOFUY

135S 3.U3I353TP ‘UOPlRWIOIUT SSBTO 3Tdnol ullm 3fael 2avedy

3u1 dn 19$ 01 90PJI} BUL U0 IJUOP S guyssaooxd Jyiels
s13ed Jofcw om1 3O $1SYSUC) wetaoxd UL =/

EASIPpn JIPUD
9330 Ut

(A233e‘J21€)UlCU

/% 100 32P1S JISUT JOUT 031 Pasnh x/ §[LSNIXVR]TPPY U}
C(LSNTIVW]uo1aonaasul
{
/% $S21P1S JO WOU U0 PUNOQ JBMOT w/ €T 10§
/% UOTIORIISUT =/ t3weuy JPUd
}
19031

$1u%1544 Uy

u»o._a_uqnmawooua.uo»omqmm.—«_mqamamomaa.z._ﬁumﬁamswomua.«
¢ u\ o%p2% 0% p2%,) 33utad
(++743u03TdTdI)TET=T 0]
$(U\U\ FIVIS NOILISNVHL ga»na=w~»=-n
¢(u\u\ FT4VI RIVEL)srutad

/& JULTI 13SFJ1p R1dwa 31rxau 03 Jajutod

/% SUTWI3IIP puUnoq JIM0T J0J pasn

Y
@ = ssero°[1)sardras
¢2 = squawaja* [t)sardyaa
0 = (TiTPRV
@ = T°[tjuoridonaasul]
€2 = [t1]zpuy
ta = [1)a1dwauw
}
(++T4INJXVIW > Tip=T1)Jd0J
/% S9OTLUT uPUl JIU10 SITQPIJIPA puUP sayqel VTP 3ziTel1iul o/
/x« T 30 1UQ0D UY SDPIP &/ ${410AYVW]3J01sdwaa 1uy
/% P311Twrad S$31€1S JO Wnu XPW »/ §1JwyTa1PIS Ul
/» J1SUT ZJITP JO unu »/ 3 Uy
/% 004d otweukp Bupanp PpaSN X3Ipul »/ ¢X03UD U o
A
»w/ $[INDYVW] 11dwaw juy
¢ [INOXVW]SaTd 1a1
{
/% S13QWaW 13S JDUIIIIIIP »/ C{UIOAXVW]13S3FTP Uy
/% SSPTO ardnod 30 SIaQuWau x/ $fHIDAX VW) Jaquauw juy
/#n e1dTI7 30 sSPTO 31dnod »/ isserd 11Ul
/¥ SSPTJ 3a1dnod uy SIUWTI JO WNU y/ $S1UaWATS Uy
/a« 91d1a1 1nduy &/ ¢ [T+7IJIH¥L) TOQWAS JIeud
}
19n11s
/%« S37d1d1 J0j 3d01s dwal a/ ¢[1+3TdI¥1)dwal Jeud
/a 13pTou TOoqUWAs dwal w/ $2 I®Yd
®/ sa1edwod* aaes jug
/% S3dtput asodand Telausad e/ stebedeutuwixefsy autg w
()o1avis

uo§1onI1suUy
yoea 40j s3iels 30 Isquwhu 3yl U0 PuUnNGa JI3ACT ® autwlalad

g08l11 8yl 10}
palinhal 318215 jo J3qunu 72101 3ul uo punva 19M0T © auTwiaisd
3oel1 9ul K0 TSA3T uoes 104 gssp1g =21dnoy usylae1sy
goPJ1 3ul 40 T19a91 uded I04 135 90ugJ3FFTQ USYIA®ISA
duyssaoodd oy1e1S W od »/

[P
$0 = q++uddoashm._-mmqnﬁuu
((d0F =1 9) 93 (NT0F =i (()1eud1ad=0)))ITiul
f1=3
}

9uyssaooad 011015 Jo0} roquiAs°sartdial

uy wsyul 3oeTd pue arvd snduy auyl wolJ sardydl 3ul Pe3d =

¢, , = qqdqcnsam._ﬁwmmﬂn«uu
(++f 41431418 > qmsnﬁ,»om

¢@ = [(]19s4a1a° |1]3TaI3284L

| t2 = mqupmasms.AA#mmqanuﬂ
W ¢ = [F13assaip°(t satdral ,
(++($4LIAXVH > (sta=()103
ERAN = mampm.“«wmapoaooaua
¢ = apop° [1}3raeladely
10arag° [1]ararlaoedd
sseTn’ [1]eraeisdrly
0’ *,« manmvmum.nh
N f1]aTaeladedl

re
>
n s
[SN
if ©

I = quoa1d 111
JOd =1 d)atIuN

op
(1=1%
/%

A

RIprewy

{

om0 A

120

/
{

st weaadad syr uy qujod sjul 1P sseyocsatdias
SSPTI oWPs JUYYT UTUITIM 1U3W3TI UOP3
10 1oyuwnu T3AET 9yl Sujeiuoo Jaquwawe*satd il
sSPT2 ardnod 3ul uy SIU3WITA
30 J3qwnu 3aulr Jjo 1unoo sdaad juswara*sartdria
»/
}
(@ == ssero-[{]sardrar)ay
(ATdT4L < H)I1T
X+ 4
}
(ATdTHL => % 9y [A]T0quAs*[f]saTdia1 == [A)dwal)arium
i1 = ¥
}
(2udardiaar > v)arttuAa
it =d
u
T

*f{f)srdtaa 103
135 35U3JajJTp 3ul oauy [gjardril aul jo xapuy aul 1ad
1,US90p 1U3W3T3 ISP 3Ul 1nQ ‘yJ1PW SIUSBWAT3 oml1 1SITF SuUl]
*sse1o ardnod 3wes
3ul oluy sardial omi 2utl 1nd udlew S1UlWaTa 33lIul TTe J]
11 m0T3q saTdial 3soul ulim 31dia1 yoves sredwon 4/

ffa)roquis [f]sardiar = [x)dwas
(++F¢TTdTHL => WET=H)JI0J

}

(3udardyal) ()attum
(T =W

(1t = f

/»

SUOT12011SUT 1U3ISFITY JO Jaqunu 3ul JIUTwIIIag

121

{
el
S+4u
(@ < siusuwata*[f)sardral)iy
{
4471
{
tu = [(Jridwsuw ~
1 = [++u]13siitp°({])sardraa o
1
(I1d14d == #)IT
/%
*136 JUUIIIIITP SU1 UY TTTS 01 TI8S
183U 34Ul Jo Xoeai dasx 01 30u3Jajad S$soJo e ST Jidwsw
1,U$30p 1UBWITa PJTUI 3U1 IRQ UDJIeW SIUIWIT3 OM1 1SITF 3Ul x/
{
{
71 = ssero°[1)sardial
(1 = [++djasquwauw: [w]satdial
¢f = [p)iaquauw: [w]sardixa
ts1uawarac (Cjsordiaiss
\5‘ s
paJedwod uaaq aAeu
ST3AST TTP SINSUT 01 ¥O03UD P SP [asN

T . . - - — = = R

t++d
((1-% =1 [d]3essstp-[1-1]satdid1) 39
(ft-1}a2dwsw => nvquﬁcm
3 =

}
(sseto° [1-%]satdla1 == ssero°[1-1)sor1d 141
we A =] sseTo* [I-1]sardya1)artua
¢[w)1as33ip° [ujsaoTdiar=3
fu=7|
}
(@ =1 [wliasiaypefu)sardixl)il
(++utruoardraiyuip=u)dol

(++WEYLIAX VWO W EA=W) 0]

1-% J03 AQ Sul JO

Jaqwaw e aq oSye asnw T-f *sserd atdnoo awes aua ug aze I-(
pue -1 STEA3T pue [Taasal l10j ad 40 laquwaw © sy [T13a31 31
/% 135S 30U8J3JJTIP 38ul uy £11AT1TSURI] J0J ¥Jau)

f++U
{
S+ad
= mmcﬂo.._auumgsms.—aumm«nﬂuuummdadua
}
(@ =1 (d]a3quaw’ [u]sardya1)aTiua
£2=

/%
»/
n/

{

}

(w=))3T TUA

{a=u

/%

a1djx1 uoiarduyls © s3aiediput @ IO K3jua vy
sardta1 TTe J0j 3aTtqel sardiil 01Uy x3puy SSETd ardnoo Jatug

x/

123

w/
¢T-% = 3
{
$0 = aweul*{++3]uoyiIonIISuU}
(ISNITWW =< ()31
$(ISNTXVW > [99 o =} auweul*[++(juoyronsisur)argum
st =
tf1)To0uwAs-f1)sardyal = o
}
(++1¢2w031d721 > Té1=1)I03
{1 =3
{e=13
¢, , = auwetyr* {(Juoyiondiisug

(++C¢LSNITVW > (t@g=() 103
/% 135S UOT1I0NJIISUT 3ZITeTITU] o/

/»
ATuoO 1uaws3T3 1SJITJ 3Ul 1€ ROOT 01 1UI[ITIINS ST 2y *ardyaa
FUTpaaossns syl JO 1UlW3T3 15413 aul Jo aireatrrdap v sy ardiia
3yl 30 1u3wal3 1SeT 38yl IVUFS puP uoj1lpucd e sy ardgaa
3U1 JO 1u34d[3 2TPPIW 3yl IdUTS °SUCTIONJILISUT 1U3I3FJTIp JO
I3qwnu 3nl jo 1unos e daad pue SUOT1IOMIISUL 1U3IIFITP 33Ul
putl ‘toquhs satdial uy pauteiuod sardyar induy UL UIATH &/

¢—-¥

—-1

}
3sT?

-~ = [++([7]23dwaw]13s33tp° [1~--]5ard1d1
(T1aN == [d}13ss3tIp*[T1-1])sa1dTa1)3}

124

‘auwes AUl ale SUCTIONIISUT IUl U3Ul S1UlWAT3 m:o«>m.~ﬂ
33Ul Jo Aue SP SSETO-37dnod 3wes a3y} uy ST 1U3UaT3 3uil
JU ‘D3a¥o3ud ST 13S J0U3JI3FITDP 3UT JO 1USWITI UOPI SV u/

$(wl1asaztv [1]sardra1=[A}ado01sdwar
(++FLYLOAXVWDIH E@=X)a0]

;% 24016 dws1 01Ul [T3A3T X0JF 15S B0U3IIIITP 33Ul 1nd »/

1
(TION =i [#)iasirtpr{r]sardrar 5%

dweuy- [(Juoyiondisul == [r)ToquiAs*[T])sardral1)iy

¢1 = asedwod
}
}3TTuUA
I1=1
= JAPS

(qudatdtar > 71

i1

}

(, ., =1 suweur*[fJuoT1dnI1sul)arida
1=
1TWIT31ELS
/=

£2

*sateotrdnp ou Sey uoyum ST3A3T ,s3tdrI1 Jo 135S ® FUIUSTTQPIS3
£Q punoj 3¢ UED pPUNOQ JI3MOT 9UY1 *S1STX3 JO0103A IJUaJISIITE © I1
*1 ST UOTIONIISUT 1PUl GO PUNOQ S1P1S JIMOT 33U} U3UY *IJ0103A
Q0U3J3JJITP © 3APU 1US20D PaJddNosdo uolew aul 1PU1 TaA3T aul Ji
‘puUNOJ ST yolew ® T[jlun Sardldl 3yl y¥nodyl aoeI) PUE

‘usny Uy 135 UOT1IINIISUY QU1 JO 1IN0 UOTIONIISUT udea MNOId a/

3

*30eJ1 wexdoxd ayjy woxl u:«:ums

27T1STUTWJIA13D ® 100J11SU0D 0% Japdo uy wexdoud 3ul uy papaau sSa3alels
JO0 I3gquwnu TP101 9yl 10 punog JImol © ‘spunoq asoyl 0 uoliewuwns

P AQ pu®P *uUOTIoNIISU] UJUPI JOJ P3Ipsau S$S31P1S JO J3qunu 33Ul uwo
spunog Jamor 3Indwoo 01 Larrraeded aul S3ATI UOTIPWIOJUY J11P1S

125

.

}

(@ =t [H]s9301sdwar)aryum

‘a=3

/%

*0432 ¢ ST 1°U1 s2015dw31 uy AJ1U3 UOP3 IO T UOTIONIASUJ
autiuauwsacul £ Ppajunod ST $30U3JINI00 JO JIQWNU IUJ

U0119NI1SUl 1PUL J0J pPartinbal $S31P1S 3ul uo
punoy Jamoy ® ST 1eUL *13S 1PU1 UT $30U3JAJ00 JO Jaqunu
9u1 1unoo Atdwis *PaysITQPIS3d uU33q SPuU 13s Iyl 3vuQ

~/

$(1- == [u++]ar01sdwar)ariunm
{
$(1- == [ws++])aI025dwWal)aTIUAM
§1- = [w)3i101sdwa
(ssero°ffw)arorsdwsr]sardraa
== sser19°[[N]atoasdwai])sardrai)iy
(TINN =} Ssero*[[w)3do0asdwalr]sardial)iy
}
(d =t [w]azo01sduwair)artua
§(++WiT-==[w])aa015dwal {T+A=wW)I0}
$(+4X¢1- ==[%]31015dwal su=x)103
}
(@ =i (u]laloirsdwal)artium
ip=u

{1- = [R]a1015dual
(ssero(1}sardiaa
== SSe0°[[¥]a101sdwal]sardiil)iy
(++¥8@ =i [¥])}o41015dwa1ip=9)JI0]
(TIAN =i ssero°[T1)satdial) iy
/=
1U3W3 T3 1°PUl J0J uojl1eoor ax03sdwal aul uy 3nyeA I~
3duilciua AQ pa1uUNOOSIP ST 1uU3WaT3a 18yl OS

126

JA220 15NW 13SJJO JW0S *3IN1IONI1IS AWNTO0D OAM} © 03

31a10nd1S ULNT0D 2934yl P wWolj uoliewiojuy s37didlr aug dew 01

£3055303u ST 31§ 80UIS °30BJ1 UOFIONJIISUT 3GY IO Buyssasoad
Jtweuig au1 UY P3SA 3Q TTIA UDTUAM 3TQRL30PI] 3Ul USYTARP1IST =/

$T°[FluoT30nI3ISUI=TIQETXEN
(TagqeTYI®N < a._qmcod»usuumauvu«
(++beISNTXVWIP ¢T=() 203
£7° {pJuoTIONIISUI=Taqe] XY

/n
«fIowd| 3Jnfied ayi JOj IZ[S UWNTOD Iyl SawWo0daq

STul J31F] °3UNO0D 3I1P1S UOTIONIISUT 1533IeT 3UT IUTWIIIIT =/

{
t+4f P
¢T°{fJuofiona3sul + 21wWIT31PIS = ITWITIIRIS -
toares = 7 [((juogidoniqsu]
/»
duiyoew 3U1 J0}) P3Ipaa3u
$31P15 JO Jagwnu Te301 3Ul UO PUNOQ JI3IMOT 3ul ST 1TWIT3IPIS =/
, {
ferl
{
tasedwod ¢ 3aeS ¢ (3dedwod ¢ 3AeS) = 3Aes
/%
30EJ1 34Ul I03
30NTeA wlwiXew 3Ul S3IARS PUP WOT10NJASUY Jeynotized e
103 Taaar goea 1° paindwod 3anyea 3yl satedwod ,IAES, o/
q
$443 %

§ y+01vdwos
(1- =1 [¥}3a01sdwal) Iy

——— ——
fee]
{
t++f
$1={()xput
(sweuf* [fluofionaisul == 0" [[]3T1QeL30EL]) F1
}
(tudardyal > ()artua
fr=(
}
(, , =1 sweutp°[T]UuoT10oNIISUI)ITIUA
(1=1
I/~

SWPUT* UOT10NI1ISU] JO0J X3pul 3ul 01 Spuodsalicd UITUAR Xpul I0J 3anfea

P SEY 80BI1 SUl JO [9A3T[yoFy ‘*Fuiul swes 3yl sausirdwodoe [jxpuf

tg1910parUs £g Aepgae up X3apuf 031 L11779PdPO 33Ul 3ARY 10U S3OF
adenduer 9 3ouys *[f)xput se PausSTTIPIS3 ST IJUWIIIIJAL SSOID AUl a/
/% 135 UOT10NJIISU] PUE 3TQqe] IOPJI] UI3MIIQ I9F3JI SSOJID USTIARIST o/

128

$4=10153135° [1]3taejaoely
¢[f133s331p°[1)satdiai=[()r195a31@°[1)araejaoray
(++l¢93oAIVRO(0=)03
fsseru* [T-1|sardai=sser)* [1]STaeladedy
${1Jroquis: [y]jsotdiri=Q°{r]jarqersoedy
¢ (2] roquhs: [T-1)sardiIi=N"[1]atqelaoed]
A++ﬁmu=om~n~u“vﬁuwuﬁvuow
¢f1)1asszwpe [1)sardrai=(y]1asiitqg° [t} araelaoed]
(++T¢4L0AXVHD T ¢0=T)d03
ff1)roqués [y]}sardiar=0 " [1]ataeladery
¢, ,=N"[1}ataeelaoel]
/4

T = TATIR
= WiTISId
£2=1UD154J

LY

/% 13A37 NJom puPp ‘juno) 31p1§ ‘1JWIT SIELS SZITeET1TUY =&/

{
{
2 = 9 [[111]Wg
2 = w01 {TInd |
(++F LAYV T En=()03
0 = [v111udkd)

(++TEINDXVHD T0=1) 103
/» AlOwSw 2anTyef IZITEIITU] «/

/% S3tqetdeA X3PUT w/ ey 2ug

}

/

SujuoPL OF1SJUTWJIAI3P e Jujonpord

TT11S S] UUJIE3s 3yl 1Pyl 3JINSU] 01 IpBW 3IIE SHI3UD quiod yoea 1®

paansse St aouareaynta ojweuiq

PaATOSad 3de SI0103A30U3I33I1Q

pSu2Tsse S| I7QPIIPA JO103T3§ 8U]
pawaojziad age Fuyssaooad otweudp jo saseud saaul

,*33d1 udJeds aul 30 Juyunad auar Suyptraocad
Sa]I3ud AJcwdl InTTed yiim uojsounfuod ujy suop s sTuUl °SITAPJIEA
10123785 9ul 01 SanyTea Fuiud(SSe SIATOAUY Fuyssasord ojweudp AUl a/

()OIWVNIa

129

e

/

S4+TATRM

fanutiucd
(uot110YpPRIIT0D)JIT
mﬁuouowqmm._q>~m:dqumamumua.q>qn:v>ﬁ=cun»n
}
(TTON =1 SSeTQ° [TATNA]3TQRLIVRIL)IT

§151X3 AuEe 1} aouaieajynbauou OJweuhp DATOSIY =/

{

130

fé3auyiuod
(U0T19TPEIIUOD)ITY
uﬁuoaowqmm.—q>~u:_mqomamomua.q>~usvcmmu>n
}
(TIAN =1 [2]113S331a°[TATNA|3TaRI30RIL) I}

/a
195 JOUIIBFITPD
3Y1 JUTATOS3 £q anuli1uo0d oOS s1ed37 ST 1q3WUBTSSe BUL
. »/

§(TATRA)UITSSY
¢34 = UOT1IOTPEJIUOD

}
(1uo371d1da1 > TATIA)3TTUA i

/e UO1E3S 11P1S o/

/&

*juawudysse

P2JJ03 © UYllm 3500 33Ul 3q sLeate isnw syl

*9101S pPTO ue ST 317 *3aoeri aul uy

I371de3 SJ4n000 UCTIPUTAWOD Jweu 3lels-Taqel aiels
3U1 JT ‘ST 1BUL *MYN IO QTQ ST 31°18°3{APLI2BI] =a/

1QT040d = 3POW° [TaTRA]aTqRl30RI]
€10103713g* {(}aTaeyaded] = 10123735°(TATRM]Tap 3301

/% 1USWUATSSE DPIVIOL »/
{(10123738° fI-TATIM]3TAR ORI ==d030373§5" [1-(]a109e]30ea])J3t
(sSeT)* [TATAM]aTARLI0RI] == sseT) [[(]arqejadedl)it
}

(6 < C)aryun
$1-TA73A =

131

}
(TTON =1 SSeTy° [TaTEm]}3TQe3%RIL)IT

/»
*I3A3T 12U} 1P A13u3d ‘pI‘Aioway inyjel TITEAUY 1Sd 13
3yl UO PaSPg ST 17 PUP *ISTMISTIO0 SINDIO0 j1uldwudysse Areriyqae uy
*sseT9 3rdnod
3yl 30 uUOTIONLISUT 3SITJ 2ul SP TaQeT Jwes 3yl sSey uolidniisul
15473 9Ul PU® *u3as uaaq Arsnotasazd sey IPUY SSEID 31dnod e uy
S1 32u3anbas uUQ(10NIISUT-UOTITPUOO~UOTIOAIISUT 3u1 UIUA SINIJO
JUBWUFLSSE PBIIOF ¥ IUVHEIIGHV 30 g3DHO4 99 uU® 1u3WUd[SSY »/

/% 1USwWUIISSe Padloj © JOJ XI3AUD =/

/& SSTQRIIPA X3IPUT w/ ‘1°x‘ftu uy
}

$73437 U}
(13A31)u23SSY

{
STATHRM = 7
$0770 = 31e1S [TATEM]aTQARL30RL]
}
(3012373S° [TATRA]3TQR]IIPI] == 10133T3§°(T]arae[30ex])4t

(0*Jravym}araelaoed] == 0°[r1)araeladsedl) st
(++TETATAADT =T)I0}
EMRN = mumﬁm.qﬂ>quzwmﬂnmamumua
$1LIANV = 3POW* [TATHA]3Tqeladed]
fu = J0103T3ag*[TATIA]OTqQPRl30PI]
s% KI1U3 WJ DTITRAUY DPUTF o/ (@ < M [Us+] (TATHAJWI)ITTUA
sa=1

}
(TTAN == J0103T13S* [TATRA]aTAPL300IL)JT

/» 1Ul3uUITSSe AJel1iqdV a/

$()dn3oeg

((9° (102103735 " [TATRA)3TQRLIOPAL] [TATHAJWY > 1UDISIF 39
A =i M°[10133738° [TATHA]3TAP[300IL] [TATHAJWI) ¥¥
(ATO¥0d == 9IPORW" [TATHAM]3TQEI300I])IT

=/
1uldwWwuaissear ¢ qdwairie pue dnxoeq
UaUl UOT1DIPPIIUOD P WY PIITNSAI $PU 1U3WUITSSE 3UY JI =/

——f

ta =
{070 = 91P1S° [TATAA]ITAP]3DRI

132

{(@)uiniag
$(TATXM)21031SDPDY
asta
{
S(TATAR)udisSsy
§()dn3oeq
}
(2 == 1U01S13)31
(T°T[TATRa)XPUT]UOTIONIISUT (J0103T3G° [TATINR]BTQELIDEIL)IT

/»
quawudisseal o L11 rue dnidoeq
U3yl UOIIOIPPJIIUOD P PasnNed SPy 1UIWUITSSE 33Ul J] «/

133

{
§(40103T73S" [TATHA]}3TAR]3oRIL TATHA)dNYXT]
{
T = TATIA
{
€2 = [1]1pPV
$f11TPPV - T*[1luotlonzasul = T°[1luoy1donaisul
}
(++1¢2 =1 T°[1}uor10oNnIISUTéT=T)I03
fWTTISIL = 3UD1SId
$+4+UWTTISIT
}
(2 => TATIEN)IT
/=
*squawudisse 33Ul 14e153l pPue 3i1e1S 3Ialj Ia3yioue
PPP *0J3Z 07 1U3WALIIIP 01 TIAI] JUTHIOM 3ul sasneds duyoeg 31 a/
{
§——TATIA
§, , = PO [TATIEM]3TqP30RL]
¢MAN = 31P1S° [TATHM] 3TaRl3d0I]
£ = 10103735 [rATNA]3TaPR]30RI]
}
((((@ == 2ud1Sad) S%
(T°[[TATHA]XPUTJUOTIONIISUT = [TATHAA]IIUDWY)) _
(MEN == 31°1S° [TATHM]BTQRI3O®RI]L) ||
((# == 1U21S34) 9
(T°[[TATHM]XpUT]UOTIONIISUT =¢ J01D3TaS" [TATAM]ITARLIORIL)) ||
(@g080d == 3poW° [TATAA]3TqPRLaDRI])) S5
(@ < TATIAM))STTUN
§1 Uy
}
/[~
pawsojiiad aq ueo dnxyy
P T11Un TSAST ZUTRIOAM QU3IINO 3Ul 2uti1onpald Lq s31e33do dnyJdEg 4/
()dnxoeqg

134

f{(T)uaniaq
$TION = J03103T3S° [Taaar]atqeladseyy
{

$+4+[T9A3T)I1UONT
£1+2U3S24=9" [T2QeT] [T13A3T] W4
$T-TATHA=A" [T30eT] [T3AT] WL

}

ﬁs A*.::u:vu«

135

fe-[T)22UdKd
asta

frjxauolgd
(8 => TATRAR)IY
tp=9" [0} (1] Wd
$a=p° [T Mt)na

‘A

} .
(TATEA =C R [F)TIWd) 3T
(++(s1o0eTxRW=)(tp=()103
(++1¢3ud31dta1>1¢0=1) 103

/% S3TQelleA X3puty u/ ETf*y auy

}

/=
T+u 01 J0123T13S 3aul
JuT1uaUaIouy AQ UOTIJFPRIIWOD 3yl 1934100 01 sidw3lie dnxyd a/

§T13qer*1aaAar 1ug
(1aqetr*raaar)dnxyg

$(2010313S (TATHM]3TqeladRrL TATHm)dnX g
}
uji1say)it

(2 1
=¢ [w]Iruowg) it

Ag.ﬁﬁe_ncna_=o«po=unmqm

/&
*dnx i © AJ1 pup T3Aal JuiNIOM JU3JIIND

3yl 01 05 *s51033J3yl (pap33u IJIE S3I1P1S IJOW 1FEUL S¥
uoyieofrdwy avy *3ou3lj 1uatdiouy ue s3asned AJ1u3 AUl II =/

. 4+ [w] 3300W T
ST+UWTTISIT = 9 [H) [wind
STATHM = M [H) (W) WA

}

(2 => A (3] fuw]ud) It

/

*TT3% aul ug
Kljua snojaald ayl 3aaray *‘Isimaaylo AI1ud 3Yl SRew *TIAIT

snotAaad e woay AXju3 Ue UTRPIUOD 30U S3IOD T30 WJ 33Ul JI =af

1[0)1383510° [T3A3T])3TqPRl3oRI =W

§13QqeT=2
}
(TION =} qﬂupmmuuﬁa._qm>wqumqamauowuavoﬁﬁnm
‘0=
/4 S3TQRTIPA X3DUT »/ strudex‘uw(qug
}
/=

dutssaooad 97101S aul WOIF TedaTlt 29 01 UmOUS ade Feul Ipew
Juiaq SjuswuIisse aaninJ S1uaasdgd UOTINTOSSI 10310934 SOUIIIIITA w»/

§TaqeT*TaAar Ul
(T3qeT* 13AdT)usaxaq

136

(@ == A [d)fujud)dy

(0 == {1]335441q° [u}araeradeal)it
}
(11N =} [1)13sis1a - fu}araegaves)atiun
HER
}
/% uotiluaasaxd 3vuagy 4/ (W > u)3TTum
f1+13A3T7=0U
/% T3aeT opnasd ,/ t44d
(1°f[wlxputrjuoriondisul => d ¢9 TIAN =1 m* [d)[w)wd)3TTun
mﬁ“&
1
/%
9SNed prnoMm ju3wuadysse [PWIOU P SP [Ul apew
ad 0l SarJdiua swesS U] Sasnes juawuIrsse opansd pue
‘AQ 9Y1 UT W UTEIUOD YOlum
TATHM Du® W [SAI] UIIMISQ STIAIT TTP 203 paysitduoooe
ST uoj1u3aaraxd 92Uz} ‘UaNel 3Ip SUO[IOP OM] »/
(tT-T°{[{wlxpugluotioniisu] == [W]IIUINL)IT
/»

ooevds Fujupewal 3Ul uo S$SqQTNSal udysse
opnadsd ‘g Uy 1337 29 03 3oeds Juo ATuo s3snev AI1u3d I e/

{
¢(w)3121SPEV
1

3sta

/=
*U011NT0S3aI 3U1 GIA
3NUTIUO0D pUP W3Ul JO IUC AsSn ‘ITQAPTIPAP 3IP $31P1S 331 JI w/

{
$(T)uaniaa
§T=u07101PRIIVOD

137

¢(@)uaniaa
{
$+4f
{
f{(T)uxniaa
(U01307pPIIUOD)JT
f(3w)ukqaq
{
{
{(1)uaniaz
(U0 §121PPIIU0D) I
¢(d*w)usaapg
}

(TION =] —ngwmukﬂn.—EamanBmowuavu«
/% ludwuaisse op3nsd WO UOTINTOS3I 135 30UIIIIITA »/

{

138

f+4l

{

$+41

{

$(U)aleISPPV
}
3573
{
{(Tiuaniaa
$1=UOT101PPIIUOD
$(4010313g° [TATAA])ATqeL3J eI TATRA)dNX
} ”
(@ == 1UJ18ad)I7 i
(1°ffo)xput)uotaonsisuy =¢ [U)2IUOWI)JI}
; S+ fUlIIUIWL
£1=9°{d] (u)wd 4
STATRA=A" [d] [u]wd

}
(@ == m* 30103738 " [T-[)ataelaoPIL] (T-T]Wi)JIT
(A =i m*[20108138" {(]arqelaordl] [T]}WI)IT
(@ =1 sser)°[1])3raeladeyy 53
sseTr)° [(]araelaoea] == sser)*(1]ar1qe]30RIL) 3T
(-=7473A3T=(1¢¥=1)I0}
(--Ftacltrarar=r)a03
f(2)uaniag
(T3A3T =) X))y
§(T3A3T C X 55
$SPTJ° [1T34A37)37QPL30RIL = SSPTD° [¥--]aT1QP]39PI])3T TuA
t1uoatdiIi=x

/»
*3ovedl
84yl JO T3A3] 1Py) D] S134 T3ADT FUINJIOM 3Ul U3YA 3wl 3Ininj e 1°®
1U3wWudrsse aul 1u3aaxd 01 W4 3UY Uy apew ST AI1uU3 UR 0S *SINDO0
aouareatnbauou ojweukp ulayl *s3asseio 3ardnod yenba jo sijuawa3rad 3yl
01 paudrsse Jursd S[IAPT wes aul siuaaaad Liowdy axnyiegd 3aul JJI

*sasseTo atdnoo juateainba J0J ToAST FUTRIOA 1U3IIND
3yl w0T3g ST3AS3Y TTE 2utidadsuy £q pPanoaud sy souareAinby ofweudq o/

/% SSTQETJIPA X3DUT 4/ sdemefet quy

/n

T-1 T9A3T J0J t1aqeyr tenba 1ouued 1-(TaA3T I03 taqer

¢3I03SI3Ul °DITPA ST (7 78qeTr)T100 [13A37 1¥ AI1ud wi 3W?
asneoaq 1 t1ager tenbhd 1ouued [1ager 1ng °*ssefo atdnod awes 3Juy
Ut 3le [pue T STIAIT UIUA S1TNS3I aouareajunbauou djweuiq

a/

fTaqet‘raaat 1uy

(19qeTtaAatr)agnbguiq

139

{(@)uaniad

{(T)maniag
(U0T101PPIIUOD)JY
((d*1-1)atnbyusq
4+ +d
(T°f{ft-t)xputrjuorronzisuy => d 9%
A =1 A [d)[T-1]Wd)aTTUAN
md"ﬂ
}
1ud1S1d 99
== {T=-F1J1UONd)3T
$(T-1)31e15pPPY
3s T3

{

140

(@
-1 [[1-1] xputjuotrionaisug

¢(T)uiniag

§I=U0710TPPIIUOD

mﬁuo»omacm.—~>~u:dm~nmawomua.~>~u:vasndm

}

(A == 1UJ1SIq)IT
(T°f{T-F)xTujuorionIisul =¢ [T-T133UdKI)IT
| $++{T-T)I3UDNT

m ¢9°[13aeT] [T]}Wd

9°{20103738° (1-(13100139P3]) [T-T)Wd
A° (10103738 [T-()araelaoel]) [T-T)KWd

ETATHN

re

$(@)udniad

$(1)uaniaz
(u0F10TTEI1VO0D) 3T
nﬁuouomqmm.qdnﬁum«amamumua.ﬁnaouvnhnpa
£(Mm01)31°21SDPY
3s13
{
s(T)uaniagz
¢1=u0110]1PEJIUOD
uﬁuouumﬁww.—~>-:~mﬁomamomu9.~>qu:vn=naw
(@ == 3u)l1S3d)at
=C [1-m02]J22TOWJ)3Y
Sas [T-ROI]IAUONS
u.—aouum~wm.—alﬁdmﬁomamomuau—al:ouutm
:.—uopomawm.qalﬂumaamamomuau—alzouu:w

(1° [{{T-mox]xDUT]UOTIONIISU]

$T+WITISS
STATHR

(@ == A*[1020313§" [T-1]13TAPLI0PIL] [T-ROI]Wd) I}

Auouuwamm._aamdamawocua == 102)J%
(sseld°[t1}atqeladel] == sseT)°[mod)arqeladedl) it
AllﬂnsA«wﬂl:ouuuvuou

(TINN =i SSPBT)"[moJ]arteeladeil)i}
¢1 aug

€103¢Mm0X 1UY
(109°n01)UAqAQ

Ll
~
-4

$T°[[13A37)XPUjUOTIONIISUI=TIqQRIXEY

(TeqeTXeW ¢ T°[[T3A3T]XPUTI]UOTIONIISUT)IY
¢ff1aaar)xpur)IpePy + T°{[T3A3T]XDPUT]UOTIONIISU]

= T°([18A3T)xpPUT|UO}I2NIISU]

f++[fT3A3T])XTUT]TIPDY
{~--1u01614

/»
J11STUTWI313P
ujewsal 01 auUiudePWL 33U J0] JI3pJO U 31P1S °PJlX3 UP SPoal T3A3T
1uU34dNU 3yl 1P UO[IONIISUT 9Y] PuUP SuUTyYoPW 3yl 031 ITqETIEAP
$31P1S 33l1] 3le 3IaUl uUIUM UOTIONJIASUT Jernoyazed e JojJ
pamoOTIP $23191S 10 JI3quWnu aul UO puUNOq 3aUl $3ISEaIoUT 31ei1SDOV s/

}

§12a437 Uy
(13431)31e1SDPPY

142

/=

f(u)uaniaq
£,0,-[1]5+Ue@1 =U
(++1¢,6, => [1]s 9% , @, =< [T]stp=1)d03
fg=0
fu‘t ug

£()s aonw
s)tole 1

up33oad a3yl J0J TIA3T 9naap e aptaoxd o3 pasn ST 10V e/

o3

13,

LI

[#2]

L2l
-

W
re:
)
L
* ;]
a2
oe]
&
<
<2
t2)
(&)

Iverson, %., Cperators , ACY Transa~ticis on Frosram=

nirg lapgugees gnd Syeiems, Vol. 1, No. 2, Uctoter 1979.

Jestra, S, #., A Dis~ioline otr Froopargpins, Frentirce
1L Inc., 1376.

r, C., The Desien ot the PSI Proeram Syutresis
veten , BPraceedinge Second Internsriondg]l Conteronco
ar_Softysaze ¥pesipneerips P, 4-1%, Jcotober 1l=?e.

Glass, 2. ¥., Comrpuzine Projs~ts 4nirn T3iled,
Computinz Worid, 1377. |

Retdorn, 3. E., "Autormatic Proeramming Throuen Natural
Language Dialog: A Survey , I1BM I Pog Joyv 24, 23€¢,
July 1375

Biermann, 4. W., A Zuage 2 S, paper in
preparatioa, Naval Posteraiuate School, 13€l.

Walker, TD. B., Uniersgrancipns Sopkan lapgusge, Klsevier
Norte=Hellani Ipe., 197c.

Snitn, L. R., "4 [esign fer an Automatic Prograt~ine
System”, Procecdings o tne 2yx lrtarzatipual Joing
Corferanca on Artiticysl [atsiltltipgpnce, Vancsuver,

B. ., Canaca, 1921,

Manna, Z. aad Waliineer, R., "4 Deductive Approacn 1c
Program Syntnesis, ACM Transactipors on Presramping

Languaees and Systems, Vol. 2, No. 1, P. 32¢-1k?2,
January 1984,

Manna, Z. and Waliineer, R., "Synthaesis: Dreams ====>
Prograns, IkEK Trancacrione gn So¢tgare bnyinpering,
Tol. SE-5, No. 4, July 1y749.

11.

s
N

13.

14.

17.

[
(.

19.

Biermann, A. 4., Approaches to Autdwatis Proeramrire
\4

Advancas in Camputer Science, Vol. 13, P. 1-£2, 1974,

Smita, D. 2., "A Survey cf tae Syntnssis of LISP
Programs f{rom Lxampies ,2roceedings o¥ rae
Ipterrational Werksnol o8 Prozram fonstruckion,
Eonss, Fraace, 14fu.

Summers, P. D., A Mstnoaoiozy for LISP Program
Construction trom Examples , JACM 24, F. 161-175,

1377.

Bierrann, 4. #., The Interence of Resular LISP Froerams
from Lxamplss , IEEE Transacriore gn Sysiems, ¥an, anc
Cyhornotics, Vol. SMC-E(t), P. S5ES5-5{¢, August 1578,

Gold, &¥. M., "lansuage ldentitication 1n tne Linit',

Intormarion ang Cootrol, Vol. 18, P. 447-474¢, 13967,

tlermann, A.%. &nd Krisnnaswamy, P., "Constructing

Programs from Example Computations, JIEZE Transactions co
N 2 2 e ') VOJ.- SE-Z' NO. 3» Po 1“1:’)"1:30

Septemper 1976.

Btermann, A.W., Eaum, R.
up tae Syntaesis of Pro ms ¢t
Transarticns on Corputers, Vol
P. 122-135, Fetruaryvy 1979.

Bierrarn, A. 4., Automatic Irserticn of Indexinx
Instructisne in BProsvamn Syntnesis , loierrctionai

Jourpal of Computes and Jrtormation Zciepnces, Vol. 7,

No. 1, Marcn 1978,

angluin, D., "Finding Patteras Commor to a Set of
> & 1,

Strines , Computer Systers Journal, Voli. 21,

August 13=2¢.

145

BIBLIOGRAPHY

Bivel, W., "Syntax~Dirscted, Semantics-Supported Program
Syntnesis , Arrtiticial Inteliigence, Vol. 14, P. 243-2€1,
1982,

Follet, R., "Syntnesising Recursive Functions witr Side

Effects , Arrificial Intelligence, Vol. 13, P. 175-22¢,
198¢.

Hewitt, C.E. and Smith, B., Toward a Proegramming Apprentice,’
A < S D' VOl. SE-I' NO- 1.

P. 26-45, March 1975.

A s

P

INITIAL DISTRIBUTION LIST

Detense Tecnnical Information Center
Cameron Station
Alexandria, Virginia 22314

Linrary, Code 2142
Naval Postgraduate Scnool
Monterey, California 9394¢

Department Chairman, Code 52E7?
Departnent of Cemputer Science
Naval Postgraduate School
Monterey, Calitornia 9394¢

Professor Douglas R. Smith, Code 52SC
Department of Computer Scienre

Naval Postgradunate Scnool

Monterey, Californla 9394¢

Captain C, ¥. Miller, USMC
199 Arterburn Ra.
Louisville, Kentucky 40222

Captain J. S. Lape, USMC
5207 Doncaster Court
Springtield, Virginia 2215¢

No.

Cories

